
Module Suite User Manual

AnswerModules Sagl
AnswerModules Sagl
Copyright © 2013-2020 AnswerModules Sagl

20

20

21

21

21

21

21

21

22

22

22

22

22

23

23

28

28

29

29

33

Module Suite User Manual

About this guide

• Audience and objective

• Prerequisites

Release Notes

Module Suite 2.9.0

• Version 2.9.0 (Ceresio) - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 2.9.0

• Content Script

• Extension for Core Share (NEW)

• Extension for OAuth Services (NEW)

• Extended logging functionality

• Other improvements

• Beautiful WebForms

• Improved SmartUI compatibility for widgets.

• Smart Pages

• "CSSmartMenu" has become "CSSmartView"

• Global revision of Smart Pages widgets

• New Smart Pages widgets

• Added support for flexbox on Smart Pages used as Smart View tiles.

• Revised Tree Widget

• All Enhancements in version 2.9.0

34

37

37

38

38

39

41

41

41

42

42

42

42

43

45

46

46

46

47

47

47

47

47

47

48

48

• Issues Resolved in version 2.9.0

Module Suite 2.8.0

• Version 2.8.0 - Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 2.8.0

• Issues Resolved in version 2.8.0

Module Suite 2.7.0

• Version 2.7.0 - Release notes

• Module Suite Compatibiliy Matrix

• Major Changes in version 2.7.0

• Extension Distributed Agent (NEW)

• Smart Pages

• All Enhancements in version 2.7.0

• Issues Resolved in version 2.7.0

Module Suite 2.6.0

• Version 2.6.0 - Release notes

• Module Suite Compatibiliy Matrix

• Major Changes in version 2.6.0

• Content Script

• Beautiful WebForms

• Form Builder

• Extension for Workflow

• Extension SFTP (NEW)

• Smart Pages (NEW)

• All Enhancements in version 2.6.0

• Issues Resolved in version 2.6.0

49

49

50

50

50

51

51

51

51

52

52

53

53

54

54

54

54

54

54

54

55

55

56

56
57
57

57

57

Module Suite 2.5.0

• Version 2.5.0 - Release notes

• Module Suite Compatibiliy Matrix

• Major Changes in version 2.5.0 SP1

• Major Changes in version 2.5.0

• Content Script

• Extension Engeenering (NEW)

• All Enhancements in version 2.5.0

• Issues Resolved in version 2.5.0

Module Suite 2.4.0

• Version 2.4.0 - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 2.4.0

• Beautiful WebForms

• Form Builder

• Content Script

• Extension Package for Blazon (NEW)

• Extension Package for the integration with S3 by AWS (NEW)

• Extension Package for xECM (NEW)

• Extension Package for Office documents

• All Enhancements in version 2.4.0

• Issues Resolved in version 2.4.0

Module Suite 2.3.0

• Version 2.3.0 - Release notes

• Major Changes in version 2.3.0

• Beautiful WebForms Form Builder

• Enhanced support for Internationalization

• Inline FormTemplate Manipulation

57

57

57

57

59

60

60

61

61

61

61

61

61

62

62

62

62

62

62

62

62

63

65

65
66

66

66

66

• Content Script

• Auditable and indexable

• Scheduling and Callbacks

• All Enhancements in version 2.3.0

• Issues Resolved in version 2.3.0

Module Suite 2.2.0

• Version 2.2.0 - Release notes

• Major Changes in version 2.2.0

• License

• Beautiful WebForms Form Builder

• CHEH Snippets

• Widget Visibility

• Buttons’ Icons and Colors

• Inline FormTemplate Manipulation

• New And Updated Widgets

• Field default value

• OnLoad script returns JSON Data

• New Content Script APIs

• DocBuilder

• Callback Scripts

• All Enhancements in version 2.2.0

• Issues Resolved in version 2.2.0

Module Suite 2.1.0

• Version 2.1.0 - Release notes

• Major Changes in version 2.1.0

• License

• Beautiful WebForms library of widgets

• Beautiful WebForms Studio

66

66

66

67

69

69

69

69

70

70

70

71

71

71

71

71

71

71

72

72

72

72

73

76
77

77

77

78

• New Content Script APIs

• Web-Services API extension pack

• All Enhancements in version 2.1.0

• Issues Resolved in version 2.1.0

Module Suite 2.0.0

• Version 2.0.0 - Release notes

• Major Changes in version 2.0.0

• Support for Content Server 16

• Completely renewed development environments and editors

• Full revamp of Beautiful WebForms widgets and templates libraries

• New Content Script APIs

• Records Management API extension pack

• Physical Objects API extension pack

• LDAP integration API extension pack

• SQL extension pack

• Content Script PDF API improvements

• Third party dependencies upgrade

• Weblingo override functionality

• Cross-script referencing

• Save views as Widgets

• Workflow Query builder

• All Enhancements in version 2.0.0

• Issues Resolved in version 2.0.0

• Important Notes when updating Module Suite to version 2.0.0

• Installing the new libraries

• Upgrade procedure for CSFormSnippets

• Upgrade procedure for CSFormTEMPLATEs

• Custom Form Templates and form widgets

79

79

81

81

81

82

82

82

82

83

83

83

83

84

84

84

85

85

85

86

86

86

86

87

Previous releases

• Previous releases - Release notes

Architecture

Module Suite

• Beautiful WebForms

• Content Script

• Smart Pages

• Script Console

• Module Suite default extensions

• Content Script Extension For Workflows

• Content Script Extension For WebReports

• Module Suite Extension For ClassicUI

Module Suite Extensions

• ModuleSuite Extension For DocuSign

• ModuleSuite Extension For ESign

Applicative Layers

Requirements, links and dependencies

• Supported Content Server versions

• Dependencies

Modules layouts

• Content Script

• amlib

• csscripts

• library

• override

88

88

89

90

90

91

101

101

106

106

116

116

119

120

120

120

121

121

122

122

127

• Beautiful WebForms

• Script console

• Script Console main configuration file

Installation and Upgrade

Prerequisites

Installing the Suite

• Installation procedure

Installing the Suite on Unix

• Installation procedure

Installing Content Script

• Installation procedure (Windows)

Installing Beautiful WebForms

• Installation procedure (Windows)

Installing Smart Pages (f.k.a. Module Suite Extension for SmartUI)

• Prerequisites

• Installation procedure

• Installing the Module Suite extension for SmartUI

• Deploying Beautiful WebForms static resources

• Importing the SmartUI Extension library objects

Installing Script Console

• Installation procedure

• Configure Script Console

131

131

135

135

135

135

135

136

137

137

137

138

140

140

140

141

143

143

144

144

145

145

148

151

152

154

155

Installing Extension Packages

• Installation procedure

• Rendition Extension Package

• What is it?

• Install the third party rendition engine

• wkhtmltopdf

• Installation

• Configuration

• rend

• Installation (Windows)

• Installation (Unix)

• Configuration

• Content Script Extension for SAP

• What is it?

• Extension setup

• Installing the Content Script Extension for SAP

• Installation validation

• Configuration options

Installing Extension for DocuSign

• Prerequisites

• Installation procedure

• Installing the Content Script Extension for DocuSign

• Installing the Script Console Extension for DocuSign (OPTIONAL)

• Configuration

• Admin dashboard

Applying HotFixes

• Hotfixes deployment

156

156

156

157

158

159

159

162

162

163

163

164

165

165

166

168

169

170

171

Upgrading Module Suite

• Upgrading from a previous version

• Upgrading the primary node

• How the library upgrade works

• Upgrading a secondary node

Uninstalling Module Suite

• Uninstallation procedure

Content Script

Content Server object

• Creating a Content Script

• Object's properties

• Static variables

• Scheduling

• Impersonate

• Icon Selection

Content Script editor

• Shortcuts

• Top Bar controls (DEVELOPER)

• Top Bar controls (ADMINISTRATOR)

• Auto-completion

• Code Validation

• Versions tab

• Code Snippet library

• Online Help

172

173

174

174

174

174

174

175

175

175

176

177

177

177

178

178

179

179

179

182

183

184

185

186

188

189

189

189

Language basics

• Statements

• Basic Control Structures

• Flow control: if – else

• Flow control: if - else if - else

• Flow control: inline if - else

• Flow control: switch

• Looping: while

• Looping: for

• Operators

• Methods and Service Parameters

• Properties and Fields

• Comments

• Closures

• Content Script programming valuable resources

Writing and executing scripts

• API Services

• Content Script API Service

• Content Script API Objects

• Execution context

• Request variables

• Support variables

• Support objects

• Base API

• Script's execution

• Script's output

• HTML (default)

• JSON

190

190

191

192

192

192

192

192

195

195

195

196

196

197

198

198

198

200

201

202

204

205

205

205

206

206

• XML

• Files

• Managed resources

• Redirection

• HTTP Code

• Advanced programming

• Templating

• Content Script velocity macros

• OScript serialized data structures

• Optimizing your scripts

• Behaviors

• BehaviorHelper

• Default Behaviours

Working with workflows

• Content Script Workflow Steps

• Content Script Package

• Content Script Workflow Step

• Workflow routing

Managing events (callbacks)

• Synchronous and Asynchronous callbacks

• InterruptCallbackException - transaction roll-backed

Extending REST APIs

• Extending REST APIs:CSServices

• Basic REST service

• Behaviour based REST services

• Service example

208

208

209

216

216

216

216

217

219

219

219

220

220

222

224

226

229

231

233

236

236

Extending Content Script

• Create a Custom Service

• Content Script SDK setup

• content-script-services.xml – Service description file

Content Script extension for SAP

• Content Script Extension for SAP

• Using the extension

• Function execution results

• SAP service APIs

• API Objects

• SapField

• SapFunction

• SapStructure

• SapTable

Extension: Classic UI

• Customize an object's functions menu: CSMenu

• Customize a space's add-items menu: CSAddItems

• Customize a space's buttons bar: CSMultiButtons

• Customize a space's displayed columns: CSBrowseViewColumns

• Default Columns

• Customize a space content view: CSBrowseView

• Create a custom column backed by Content Script: CSDataSources

Beautiful WebForms

Content Server object

• Creating a Beautiful WebForms View

237

238

238

239

240

242

243

243

245

245

246

247

248

250

251

251

253

255

255

256

257

257

258

259

260

262

• Understanding the view object

Form builder

• Layout

• Shortcuts

• Top Bar controls (DESIGNER)

• Top Bar controls (DEVELOPER)

Building views

• Understanding the grid system

• Understanding the Beautiful WebForms request life-cycle

• How incoming requests are processed

• Lifecycle schema

• Custom Logic Execution Hooks (CLEH)

• Managing form fields values

• Adding and removing values from multivalue fields

• Form actions

• Standard form actions

• Custom form actions

• Attaching Custom information and data to a Beautiful WebForms view

• ViewParams

• ViewParams variables

• Form Components that make use of 'viewParams' values.

• The widgets library

• The widget configuration panel

• Beautiful WebForms View Templates

• Customize the way validation error messages are rendered

• Display errors in Smart View

263

263

264

269

271

271

272

272

273

274

275

275

275

276

277

277

277

277

278

278

279

280

280

280

281

282

Widgets

• Beautiful WebForms Widgets

• Model and Template

• Static Resources Management

• Widgets libraries

• Widget Library V1

• Widget Library V2

• Widget Library V3

• Widget Library V4

Extending BWF

• Content Script Volume

• CSServices

• CSFormTemplates

• CSFormSnippets

Embed into SmartUI

• Embed into Smart View

• Why?

• Create an embeddable WebForms

• How to publish a Webform into a Smart View perspective

• ModuleSuite Smart Pages is installed

• ModuleSuite Smart Pages is not installed

Update view library

• Beautiful Webforms views updater

• What is it?

• Tool setup

• Tool usage

284

284

284

285

285

285

286

287

287

288

290

291

291

292

293

293

295

295

295

299

301

301

Extension: Mobile WebForms

• What is it?

• AppWorks Mobile Application

• Module Suite based extension for REST APIs

• Mobile WebForms Application Builder

• Mobile WebForms setup

• Using the tool

• Creating the form

• Implementing the Content Script end-point

• Building the OpenText AppWorks Gateway Application

Extension: Remote WebForms

• What is it?

• Extension setup

• Create remote package

• Using forms.createExPackage API

• Using Beautiful Webforms Studio

• How to deploy a Beautiful WebForms remote form package

• Synchronize form data back to Content Server

• Remote data pack files are produced on Script Console and sent over to Content
Server

• Form data are submitted directly from Script Console

Smart Pages

Working with Smart Pages

• Basic concepts

302

302

303

304

307

312

314

317

321

322

322

323

325

325

325

331

332

332

332

• Module Suite Tiles in the Widget Library

• Tile Configuration

• Tile: Content Script Result

• Tile: Content Script Tile Chart

• Tile: Content Script Tile Tiles

• Tile: Content Script Tile Links

• Tile: Content Script Tile Tree

• Tile: Content Script Node Table

• Embedding Beautiful WebForms views in SmartUI

• Icon reference cheat sheet

• Iconset Color codes

• All icons

Script Console

Working with Script Console

• Execution modes

• Command Line Shell Mode

• Script Interpreter Mode

• Server Mode

• Script repositories

• Script Console Internal scheduler configuration file

334

334

334

335

336

336

337

337

339

339

339

340

341

341

341

342

342

342

342

343

343

Extension for DocuSign

Working with DocuSign

• Creating a signing Envelope

• EXAMPLE: Creating a simple envelope

• EXAMPLE: Creating an envelope using a predefined template

• Embedded recipients

• EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal user

• Envelope status update and signed document synch back

• EXAMPLE: Poll DocuSign for Envelope updates and synch back documents

How to

Content Script: Retrive information

• Nodes

• Getting Content Server nodes

• Getting a node given its ID

• Get a list of nodes given their IDs

• Get Volumes

• Get Nodes By Path

• Users and Groups

• Getting Content Server Users and Groups

• Get current User

• Get by member ID

• Get member by the name

• Get members by ID

343

343

345

345

345

346

346

347

347

349

351

352

352

352

352

353

355

355

356

358

359

360

361

• Permissions

• Getting Content Server Node Permissions

• Categories

• Getting Node Categories

• Classification

• Executing SQL queries

• Execute a simple SQL query

• Execute a SQL query with pagination

• Working with Forms

• Retrive submitted data

Content Script: Create objects

• Coming soon...

Training Center

• What is it?

• Training Center setup

• Using the tool

Adminisration

Admnistrative pages

• Base Configuration

• Enable / Disable Module Suite features

• Logging administration

• Manage API Services

• Scheduling

• Manage Callbacks

361

363

363

363

364

364

364

364

365

366

366

368

Content Script Volume

• CSSystem

• CSFormTemplates

• CSHTMLTemplates

• CSFormSnippets

• CSScriptSnippets

Snippets and Widgets library

• Module Suite components and widgets library

• Import and upgrade tool

• Load a Library's manifest file

• Analysing the incoming changes and the current Library version

• Perform the initial library import

Tags

About this guide

Audience and objective¶

This manual is intended to be an introduction to AnswerModules Module Suite.

Module Suite is a collection of solutions that extend the capabilities of OpenText Content Suite
and can be successfully deployed to cover a wide range of tasks, from very simple automation
operations to more complex and complete applications.

This manual is structured to target those who intend to create, deploy, use, and maintain
applications using Content Script or Beautiful WebForms, and/or want to have a deeper
understanding of the possibilities and what can be achieved with the solutions. It is also
intended to help the administrators of systems that deploy Module Suite Components.

Prerequisites¶

The majority of this manual has been designed to be accessible to anyone familiar with the
basic end-user features of OpenText Content Server. Readers are expected to be comfortable
with creating items, navigating workspaces and searching for items. Although not essential, the
following knowledge is beneficial:

OpenText Content Server Knowledge Fundamentals

Familiarity with the basics of HTML

Ability to create simple LiveReports or WebReports

Knowledge of the DTree view from the OpenText Content Suite schema

•

•

•

•

20 About this guide

Copyright © 2013-2020 AnswerModules Sagl

Release Notes

Version 2.9.0 (Ceresio) - Release notes¶

Release Date End of AMP(*) End of Life

2020-12-21 2023-12-21 2024-12-21

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.9.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.9.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

Content Suite 20.2 X

Content Suite 20.3 X

Content Suite 20.4 X

Major Changes in version 2.9.0¶

Content Script¶

Extension for Core Share (NEW)¶

Programmatically manage sharing of content through Core Share

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

21 Release Notes

Copyright © 2013-2020 AnswerModules Sagl

Extension for OAuth Services (NEW)¶

Manage OAuth2 authentication flow(s) in Content Script

Extended logging functionality¶

Added Content Script API to initialize separate Content Script log appenders.
Additional log files can be accessed directly from the Content Script Editor.

Other improvements¶

Map/Reduce framework support has been optimized.
50+ New APIs added across different endpoints.

Beautiful WebForms¶

Improved SmartUI compatibility for widgets.¶

ItemReference Popup: now supports SmartUI variant for selection popup and contextual
menu.

//Get accesstoken and redirect the user on this same script if authorization
//is required
token = oauth.getAccessToken("default", "${url}/runcs/${self.ID}", [:])
if(!token.accessToken && token.accessTokenUrl){
 redirect token.accessTokenUrl
 return
}

rest = csws.getHttpBuilder("https://api.zoom.us/v2/users")
result = rest.get(){
 request.headers['Authorization'] = "Bearer ${token.accessToken}"
}
out << result

•
•

•
•

•

22 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Smart Pages¶

"CSSmartMenu" has become "CSSmartView"¶

CSSmartMenu, the folder within the Content Script volume that allowed you to manage menu
extensions for SmartView browsing views, has been renamed to CSSmartView. This change
reflects the fact that, as of this release, it will allow to control numerous new customizations to
various SmartView features, and not only limited to the menus.

CSSmartView:Columns: it's now possible to add/remove columns from/to browsing views
using Content Scripts stored in the aforementioned folder. E.g.

Example

Script

CSSmartView:Actions: it's now possible to add custom actions to a node's menu lazy
loaded set of actions . E.g.

Example

•

//In the execution context of this script:
// - nodesColumns (a map that associates nodes' ids with their columns definitions). Tipically contains a sing
// - nodes: the list of nodes records. Tipically contains a single item.
// - req: the original REST request record
// - envelope: the current REST API call envelope

nodesColumns[3156087]?.add([type:43200, data_type:43200, name:"Add. Information", sort_key:"type"

//Must return the revised nodeColumns
return nodesColumns

•

23 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Script

/**
This script receives the following variables in the execution context:

- actions: a map that associates the node id to the list of available actions
E.g.
 "12345": {
 "data": {
 "Classify": {
 "content_type": "application/x-www-form-urlencoded",
 "method": "POST",
 "name": "Add RM Classification",
 "href": "/api/v2/nodes/2891606/rmclassifications",
 "body": "{\"displayPrompt\":false,\"enabled\":false,\"inheritfrom\":false,\"managed\":false}",
 "form_href": ""
 },
 "initiatedocumentworkflow": {
 "content_type": "",
 "method": "",
 "name": "",
 "href": "",
 "body": "initiate_in_smartview",
 "form_href": "",
 "wfList": [

]
 },
 "zipanddownload": {
 "content_type": "",
 "method": "POST",
 "name": "Zip and Download",
 "href": "/api/v2/zipanddownload",
 "body": "",
 "form_href": ""
 },
 "RemoveClassification": {
 "content_type": "application/x-www-form-urlencoded",
 "method": "POST",

24 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

CSSmartView:Commands: it's now possible to define multiple commands in the same
script and group them in the same sub-menu. E.g.

Example

Script

 "name": "Remove Classificfation",
 "href": "/api/v2/nodes/2891606/rmclassifications",
 "body": "",
 "form_href": ""
 }
 },
 "map": {
 "default_action": "open"
 },
 "order": [
 "initiatedocumentworkflow",
 "Classify",
 "RemoveClassification",
 "zipanddownload"
]
 }
}

- req: the current HTTP request
- envelope: the REST API request's envelope

By changing the support variable "actions" you can make visible actions defined by scripts in CSVolume:CSSmartV

**/

actions[3156106].data["am_release"] = [
 body:"am_release"
]
actions[3156106].order.add("3156106")

•

25 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

CSSmartView:Commands: Content Script scripts executed as commands can now
return execution information to the caller. E.g.

//Commands scripts can now return a list
return [
 [
 am:[
 exec:[
 mode:"group"// (1) This command will act as our flyout
]
]
 ,scope: "multiple"
 ,group: "info"
 ,flyout: "am_group" // (2) This command will act as our flyout
 ,baricon: null
 ,icon: null
 ,name: "Try Module Suite"
 ,command_key: "am_group"
 ,signature: "am_group"
],
 [
 am:[

 confirmation:[
 required:false,
 title:"",
 message:""
],
 panel:[
 width:40,
 cssClass:"",
 slides:[
 [
 title:"",
 script:null
]
]
],
 key:[
 code: 83
 ,message:""
 ,nogui:false
],
 exec:[
 mode:"script"
 ,script: 2644067
 ,params:[

]
 ,refresh_on_success:true
 ,on_success_action:""
 ,newtab:false
 ,url:""
]
]
 ,baricon: null
 ,icon: null
 ,name: "Content Script"
 ,command_key: "am_content_script"
 ,signature: "am_content_script"
 ,scope: "multiple"
 ,flyout:"am_group"
 ,selfBlockOnly: false
]
 ...
]

◦

26 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Example

Script

CSSmartView:Override: It is now also possible to enhance the information
associated with nodes with column information injected via Module Suite.
E.g.

Example

Script

//Script code...
//Once done...notify caller
json([message:[type:'success', text:"Get the Module Suite. You won't need anything else.", details:

◦

def drawStatusBar = { node ->

 def statusList = ['Draft', 'Under Revision', 'Approved', 'Published']
 def numSteps = statusList.size()

27 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Global revision of Smart Pages widgets¶

Smart Pages widgets have been reviewed in terms of both styling and structure.
Smart Pages CSS is now better isolated from Beautiful WebForms CSS. The base CSS class
for Smart Pages has been changed from "am-smartui" to "am-smartpage". The "am-
smartui" class is now reserved for Beautiful WebForms. NOTE: This may cause breaking
changes in custom rules and page templates based on the legacy class.

New Smart Pages widgets¶

The following widgets have been added to the Smart Pages Editor, and can now be used to
build Smart Pages:

Button Container: a container-type widget meant to hold regular buttons. Can be
configured to display as a button-group.

Link Button: a button widget that will open a configured url.

Step indicator: a widget to display a process status and execution details.

 def currStep = new Random().nextInt(statusList.size())
 def currStepName = node.name

 def stepStyle = "height:100%; width:calc(100% / ${numSteps}); float:left; background-color:#F0AD4E; box-siz

 def stepsHtml = ""

 (currStep + 1).times{
 stepsHtml += """"""
 }

 return """
 <div style="text-align:center; font-size:.75em">${currStepName}</div>
 <div style="margin:3px 0; padding:0; height:5px; background-color:#eee;">${stepsHtml}</div>"""
}

retVal = nodes.collect{
 [
 ("D${it.dataid}" as String):[//The object returned MUST be made of simple types (no GString allowed)
 commands:["am_group", "am_bwf"],
 columns:[
 // Column defined in CSSmartView:Columns as nodesColumns[3156087]?.add([type:43200, data_type:4
 // columns of type 43200 can be used to inject HTML
 _am_info:drawStatusBar(it)
]
]
]
}
return retVal

•
•

•

•

•

28 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Added support for flexbox on Smart Pages used as Smart View tiles.¶

Add the CSS helper class "am-page-container-flex" as a custom class within the Smart View Tile
configuration to enable flex support on Layout containers and panels within the included Smart
Page. This will allow to create tiles that better occupy all the available vertical space.

Revised Tree Widget¶

Tree Widget has been revised and enhanced with new functionalities.

It is now possible to enable the standard Smart UI function menu on tree nodes.
It is now easier to bind tree nodes to Smart UI actions.
Helper CSS classes have been added to support adding extra columns to the tree nodes.
Default tree look & feel is now more similar to Smart UI style.

Example

Script

•
•
•
•

 def rootID = params.uiParentID ?: (self.parent.ID as String)

 if(params.widgetConfig){

 if(rootID?.isLong()){

 def node = docman.getNodeFast(rootID as Long)
 json([id : 'treeWColumns',
 widgetConfig : [

29 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

 //node_tag : "DIV", // Custom node tag
 tileLayoutClasses : "",
 tileContentClasses : "",
 treeId : "test",
 reloadCommands : ["updateTree"],
 root : "${rootID}",
 plugins : ["wholerow"],
 theme : ['name' : 'proton',
 'responsive' : true
],
 grid : [
 columns : [
 [width : 50, header : "Nodes"],
 [width : 30, header : "Actions", value : "icon"]
]
],

 html : """
 <style type="text/css">
 </style>

 <form class="binf-form-horizontal">
 <div class="binf-form-group">
 <label for="filter" class="binf-control-label binf-col-xs-2" style="padding-top:7.5px">Filter</label>
 <div class="binf-col-xs-8">
 <input id="filter" name="filter" placeholder="type your filter" type="text" aria-describedby="filterHelpBlock
 Type a term to filter the tree no
 </div>
 </div>
 </form>

 <script>
 csui.onReady2([
 'csui/lib/underscore',
 'csui/lib/backbone',
 'csui/lib/jquery',
 'csui/lib/radio'
],
 function(_,Backbone, jQ, Radio){

 var amChannel = Radio.channel("ampagenotify");

 amChannel.on("printConsole", function(params){
 console.log("GOT request "+JSON.stringify(params));
 });

 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });

 jQ("#filter").on("blur", function(){
 amChannel.trigger("updateTree",{'term':jQ(this).val()})
 })

 });
 </script>"""
]
])
 return
 }
 }

 def getNodeContent = { node ->

 def content

30 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

 def text = node.name

 content = """
 ${text}

 Sample value

 ${node.comment}

 """
 return content

 }

 def getHeaderRow = { node ->

 return """
 ${node.name}
 Subtype
 Description
 <!--Actions-->
 """

 }

 /* Utility function to fetch all children of a node. */

 def fetchChildNodes = { spaceNode, Boolean shouldExpand ->

 def data = spaceNode.childrenFast.collect{ node ->

 retVal = [
 name : node.name,
 id : (node.isContainer)?"${node.ID}_node":"${node.ID}_doc",
 text : getNodeContent(node),
 icon : "${node.webClass}",
 children : node.isContainer && node.childCount > 0,
 state : [
 opened : shouldExpand
]
]

 if(!node.isContainer){
 retVal.a_attr = [
 "data-toggle" : 'command',
 "data-am-action" : 'Download,Delete,Properties,am_zoom',
 "data-am-params" : node.ID
]
 } else {
 retVal.action = 'navigate'
 }
 return retVal

 }?.sort{ it.name }

 return data

 }

 /* Utility function to fetch children of a node in "paged" fashion. */

 def fetchChildNodesPage = { spaceNode, Boolean shouldExpand, Integer pageNumber, Integer pageSize

 nodePage = spaceNode.getChildrenPage()
 nodePage.pageSize = pageSize

31 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

 nodePage.pageNumber = pageNumber

 nodes = docman.listNodesByPage(nodePage, "name", false, false, false, false)

 def data = nodes.collect{ node->

 retVal =[
 name : node.name,
 id : (node.isContainer)?"${node.ID}_node":"${node.ID}_doc",
 icon : "csui-icon ${node.webClass}",
 text : getNodeContent(node),
 children : node.isContainer && node.childCount > 0,
 state : [
 opened : shouldExpand
]
]

 if(!node.isContainer){
 retVal.a_attr = [
 "data-toggle" : 'command',
 "data-am-action" : 'Download,Delete,Properties,am_zoom',
 "data-am-params" : node.ID
]
 }

 return retVal
 }?.sort{ it.name }

 return data

 }

 // MAIN CODE

 if(!(rootID.split("_")[-1] in ["page", "node", "doc"])){

 // This is the root node. The Outline is closed by default

 def node = docman.getNodeFast(rootID as Long)

 docman.getChildrenFast(node)

 data = [
 [
 name : node.name,
 icon : "csui-icon cs_folder_root",
 id : "${node.ID}_node",
 text : getHeaderRow(node),
 children : fetchChildNodes(node, false),
 state : [
 opened : true
],
 action : 'navigate'
]
]

 } else {

 data = []

 Boolean shouldExpand = false
 Integer pageSize = 5

 def idElements = params.uiParentID.split("_")

 Long space = idElements[0] as Long
 String spaceType = (idElements.size() > 1) ? idElements[-1] : 'node'

32 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

All Enhancements in version 2.9.0¶
ID Scope Description

#000936
Beautiful
Webforms

Add internationalization support also to widget

 Integer pageNumber = (spaceType == 'page') ? (idElements[1] as Integer) : null
 def spaceNode = docman.getNodeFast(space)

 if(spaceType == 'page'){
 data = fetchChildNodesPage(spaceNode, shouldExpand, pageNumber, pageSize)

 } else if(idElements[-1] == "node"){
 if(spaceNode.childCount > pageSize){

 // Paginate children list if it is bigger than 'pageSize'

 Integer numTotalPages = Math.ceil(spaceNode.childCount / pageSize) //spaceNode.childCount % pageSize

 numTotalPages.times{ pageIndex ->

 def children = true

 if(pageIndex == 0){

 // Pre-expand the first page
 children = fetchChildNodesPage(spaceNode, shouldExpand, 1, pageSize)
 }

 data.add([
 name : "${space}_${pageIndex + 1}_page",
 id : "${space}_${pageIndex + 1}_page",
 icon : "cs_vfolder",
 text : "${(pageIndex * pageSize) + 1} ... ${(pageIndex + 1) * pageSize }",
 children : children,
 state : [
 opened : shouldExpand
]
])
 }

 } else {

 data = fetchChildNodes(spaceNode, shouldExpand)
 }
 }
 }

 if(params.term){
 //This should be consider just an example of a possible filtering solution. Since we are not "expanding" the
 //as the last operation is not impacting performances very much.
 filter = { list, term ->
 list.removeAll{ it.children == false && ! it.name.toUpperCase().startsWith(term.toUpperCase
 list.each{ listElement ->
 if(listElement.children && listElement.children instanceof List){
 filter(listElement.children, term)
 }

 }
 }
 filter(data, params.term)
 }

 json(data)

33 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#000916
Beautiful
Webforms

Add and remove button for multifield in modal popup

#000876
Beautiful
Webforms

Allow feedback from actions performed in embedded forms to
show in standard Smart UI feedback panel

#000908 Smart Pages
Smart menu: additional menu command in SmartUI override only
at the first level

#000928
Beautiful
Webforms

Item Reference Pop Up browse is in classic view

#000871 Content Script
When changing the default CS.log location from the Opentext.ini
file the change does not take effect

#000931 Content Script
Missing documentation for xecm extension xecm.updateRole(..)
API

#000955 Extension - FTP [FTP api] Sending documents in binary mode

#000942 Smart Pages
More flexibility is required regarding the logic to use to show a
custom action in a menu

#000440
Beautiful
Webforms

Improve robustness of Jquery Interdependencies widget

#000947 Module Suite Re-import of a Content Script is not supported

#000949
Beautiful
Webforms

In a set; delete link is missing for the first row

#000910 Smart Pages CSSmartMenu not displayed on Results page

Issues Resolved in version 2.9.0¶
ID Scope Description

#000951
Beautiful
Webforms

Click on a submit button display "saving" and there is no way to
change the language

#000932
Beautiful
Webforms

Customizing search string in Smart DropDown

#000906
Beautiful
Webforms

Datatable widget: if a language file is applied; all the words are
translated properly excluding the search box of the columns

#000917
Beautiful
Webforms

Search/Clear buttons overlapped for Item reference Popup

#000904
Beautiful
Webforms

Minor CSS issue in User by login widget

34 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#000915
Beautiful
Webforms

Graphical issue in multifield: plus and minus button are in strange
position

#000894
Beautiful
Webforms

Issue in installation of BWF updated with case sensitive database

#000898
Beautiful
Webforms

Smartlookup behavior used by Smart Dropdown DB lookup widgets
does not support PostgreSQL

#000805
Beautiful
Webforms

Pattern validation rule is truncated if the model contains
parentheses

#000885 Smart Pages Issue Smart View Custom Menu in execution classic mode

#000891
Beautiful
Webforms

Inconsistent behavior for check-boxes when used with Widget
Space Content

#000881
Beautiful
Webforms

The Item Reference Popup Widget in Library V3 does not render
correctly

#000883
Beautiful
Webforms

Currency Widget anomaly validation on IE

#000923
Beautiful
Webforms

Smart ViewTask template not displayed correctly on CS 20.3

#000913
Beautiful
Webforms

Item reference Popup: with v4 library the context menu is the one
of Smart UI

#000719
Beautiful
Webforms

User By login doesn't show the values if is located at the bottom of
the page

#000924
Beautiful
Webforms

Usability issue with DropDown and page scroll

#000751
Beautiful
Webforms

Item Reference Popup doesn't work properly

#000874
Extension -
ZIP

Error returning zip resource on Linux

#000892
Beautiful
Webforms

XSS security vulnerability

#000946 Module Suite
Content Script execution audit track flag has been associated to
the wrong bit

#000927
Beautiful
Webforms

Visualization issues with Add Delete Button widget

#000840
Beautiful
Webforms

OnChangeAction doen't work with V3:SmartView Template -
registerInitWidgetCallback

35 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#000922 Smart Pages Low performance in Nodes table tile

#000919
Content
Script

Issue method grantFullControl on Add Major Version

#000903
Content
Script

fileName null in the CSVersion object

#000680
Content
Script

Accessing rendition content on CSVersion result in wrong content

#000925
Content
Script

Content Script Scheduling administration does not work with
PostgreSQL databases

#000896
Beautiful
Webforms

Issue in Manage Callbacks: on Linux box an error is returned trying
to listing the callbacks

#000957 Smart Pages Widget Nodes table - Error on selecting nodes

#000902
Beautiful
Webforms

Issue widget "go" anchor on library V4

#000958
Content
Script

Method distagent.mapReduce doesn't work correctly

#000938 Module Suite Library 2.7 and 2.8 included in installation packages

#000921 Smart Pages GoTo option for action button is not working

#000890
Beautiful
Webforms

Alert javascript when editing a document in the SmartView Task
template on IE

#000940
Beautiful

Webforms
Button label text outside the button

#000937
Content
Script

Unable to retrieve classifications for an email (subtype 749)

#000962
Beautiful
Webforms

Server Side validation for Smart DropDown: the field with error is
not highlighted

#000909
Beautiful
Webforms

Panel Arrow wrong direction

#000918
Beautiful
Webforms

JS Conditional container behavior with multiple field

#000964
Content
Script

Trace files in REST API call

#000933 Smart Pages
Expand tile button not working Smart UI when there is a parameter
in the URL

36 Version 2.9.0 (Ceresio) - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#000929
Content
Script

Erratic problems related to script execution are recorded in
complex applications that make massive use of the runCS API.

#000930
Content
Script

ContentScript hasTemplate API might rise an error at startup

#000884
Beautiful
Webforms

Issue Wysing Editor the copied image is duplicated

#000888
Script
Console

Issue load configuration with database PostgreSQL

#000954
Script
Console

Regression in RenderForm.cs

#000920 Module Suite Regression in cache.putForUser API

#000882 Smart Pages
Custom Menus are not displayed in "Node Browsing Table" when
the widget is associated to a Virtual Folder

#000965
Content
Script

xecm.createWorkspace doesn't work if a multiple attribute of a
category is set

#000866
Extension -
eSign

when executing the esign.addESignNatureToFormStep(form;
"Approve and Sign") the module returns an error

#000952
Content
Script

Error in some methods for Physical Object

#000934
Script
Console

Script Console slow calling script with RunCS

#000887
Script
Console

Log not working in Script Console

#000854
Script
Console

The first attempt to authenticate to the script console always fails
with a 403 error

#000970
Beautiful
WebForms

BWF Studio fails to export a form (for remote usage) if a validity
date has not been specified

Version 2.8.0 - Release notes¶

Release Date End of AMP(*) End of Life

2020-07-16 2023-07-16 2024-07-16

(*) Active Maintenance Period

37 Version 2.8.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.8.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.8.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

Content Suite 20.2 X

Content Suite 20.3 X

All Enhancements in version 2.8.0¶
ID Scope Description

#000865 Script Console
The Script Console Installer does not have the ZIP Extension
among the available extensions

#000814
Beautiful
Webforms

Error widget does not show "go" anchors if errors are triggered in
javascript validation

#000863
Beautiful
Webforms

Extend BWF view updater support to PostgreSQL DBMS

#000833 Module Suite
Now you can add a custom value in the library search filter of the
Import / Upgrade Tool; use * to search all libraries

#000861 Content Script
Extend support of jdbc 'otcs' datasource to PostgreSQL and SAP
Hana dbms

#000868 Module Suite
Unable to access Content Script and some components with X-
Content-Type-Options HTTP Header

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,
however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.8.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

38 Version 2.8.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.8.0
http://developer.answermodules.com/manuals/2.8.0
http://developer.answermodules.com/manuals/2.8.0
http://developer.answermodules.com/manuals/2.8.0

ID Scope Description

#000867 Smart Pages
Add content awareness to Content Script Nodes Table Smart UI
widget

#000810 Smart Pages
Smart UI Commands can now open a Smart Page or Content Script
result in a side panel

#000813 Module Suite CSSynchEvents might fail if "Node Cache" is enabled

#000824 Module Suite
"Node Cache" feature is preventing "startWorkflow" API from
working properly

Issues Resolved in version 2.8.0¶
ID Scope Description

#00006
Extension -
Blazon

Bloazon ExtPack returns the wrong file when OCR or PDF/A
convertion are enabled

#00044
Script
Console

Script Console returns 500 Error after a period of inactivity

#00018 Module Suite Missing Workflow Attachments and Workflow Comments

#00069
Beautiful
Webforms

Issue widget Debug

#00037
Beautiful
Webforms

Submit multiple times

#00058
Content
Script

getuserbyname REST API endpoint returns error on Postgresql DBMS

#00000
Beautiful
Webforms

Javascript error raised from the "Error" widget if server side
validation fails on an hidden field

#00001
Beautiful
Webforms

Currency widget resets value upon loading on Internet Explorer 11

#00022
Content
Script

Current user context is not restored when a subscript
(impersonating an other user) trigger the execution of a CSSE Script

#00002
Beautiful
Webforms

Phone widget always shows validation error on Internet Explorer 11

#00003
Beautiful
Webforms

Error widget "go" anchor not working if error is associated to
Currency widget

#00004
Beautiful
Webforms

Space Content widget drop area not working on Internet Explorer 11

#00025
Beautiful
Webforms

CSTemplate:V3:Smart View Embeddable doesn't work properly in
OTCS 20.2

39 Version 2.8.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#00026
Beautiful
Webforms

velocity.tools.generic.LogTool error

#00027
Beautiful
Webforms

Wrong search box position when dropdown opens above

#00028
Content
Script

Trace files in REST API call when a document is returned

#00029
Beautiful
Webforms

ReadOnly of the User by login widget does not work

#00030 Module Suite
Regression: Compilation of scripts using classes defined in other
scripts might fail

#00035
Beautiful
Webforms

Incorrect alignment of the form fields readonly with the Opentext
V4 template

#00039
Beautiful
Webforms

Panel Layout issue 'is collapsible'

#00047
Content
Script

Content Script content cached

#00048 Smart Pages Teams Integration

#00049 Smart Pages SmartUI Menu on CS 16.2.8

#00050
Beautiful
Webforms

Anomaly validates fields with multiple lines

#00051
Content
Script

Error creating a Business Workspace template

#00052
Beautiful
Webforms

Anomaly in the 'Tile Links' snippet code

#00056
Beautiful
Webforms

Currency Widget anomaly when the "Clean format" is not used

#00057 Smart Pages Issue SMART UI expand

#00062 Smart Pages Scrolling Does not Work on Content Script Expand Screen

#00064 Smart Pages SmartUI ModuleSuite Tile Widgets not aligning

#00070 Smart Pages Custom Smart UI Menu Commands does not works for IE browser

#00042
Script
Console

Script Console login timeout on startup

#00019
Beautiful
Webforms

Additional validation constraints are not enforced for fields that are
not visible when the webform is loaded for the first time

40 Version 2.8.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#00072 Smart Pages
Parameters are not properly managed when an action is invoked by
a Smart View Custom Menu Item

#00073
Beautiful
Webforms

Missing workflow step info on form object when using Beautiful
Webforms in workflow steps

#00020 Smart Pages
The Smart UI command that opens a panel causes the loading
indicator to activate; closing the panel has no effect

#00012
Beautiful
Webforms

Smart Dropdown component initialization fails if associated form
field value contains a single quote

#00011
Beautiful
Webforms

The "Select *" widgets of the V3 library do not send any value (their
value is reset when performing any action)

Version 2.7.0 - Release notes¶

Release Date End of AMP(*) End of Life

2020-04-17 2023-04-17 2024-04-17

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.7.0.

Module Suite Compatibiliy Matrix¶
OpenText Content Server MS 2.7.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,
however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.7.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

41 Version 2.7.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.7.0
http://developer.answermodules.com/manuals/2.7.0
http://developer.answermodules.com/manuals/2.7.0
http://developer.answermodules.com/manuals/2.7.0

OpenText Content Server MS 2.7.0

Content Suite 20.2 X

Major Changes in version 2.7.0¶

Introduced the new concept of layered configuration. It's now possible to replicate the
structure of the Content Script Volume in a Content Script Volume Folder to isolate
customization that are related to specific applications. Module Suite will resolve the
resulting multi-level configuration structure.

Introduced the possibility to add new command in SmartUI by defining Content Script
objects in the CSSmartMenu folder of the Content Script Volume.

Introduced the possibility to schedule a job that leverages the Map-Reduce framework
implemented by the Distributed Agent. With this new feature, developer will be able to
process much larger amount of data, reducing the impact over the system.

Updated API Guides and in-line documentation.

Extension Distributed Agent (NEW)¶

A new service "distagent" has been introduced for managing script scheduling and supporting
the usage of OTCS' Distributed Agent framework.

Smart Pages¶

It's now possible to include multiple WebForms in a single SmartPage. Several improvements in
Module Suite tiles.

All Enhancements in version 2.7.0¶
ID Scope Description

#0000781
Beautiful
Webforms

PDF Viewer widget now supports Content Suite Viewer

#0000780 Extension - PDF API for easy retrieval of pdf text annotations (comments)

#0000777 Smart Pages
It is now possible to dynamically configure additional Smart UI
commands through Module Suite

#0000776 Module Suite Updated Java core dependencies

#0000768 Module Suite Enhanced compatibility with xECM for Engineering

#0000767 Module Suite
Enhance Content Script license configuration field in Base
Configuration

•

•

•

•

42 Version 2.7.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000764 Smart Pages PDF Preview Content Script

#0000733 Smart Pages
It's now possible to associate a custom CSS class to Content
Script Result Tile

#0000720 Content Script Trim custom parameters in the Base configuration

#0000713
Beautiful
Webforms

actionParams handler in the submit action in the
SmartViewTask template

#0000689 Content Script New xlsx API to get Style ID used in a specific cell

#0000688 Module Suite increase the contrast of the flag in the upgrade library tool

#0000572 Module Suite
It is now possible to change Duration, StardDate and DueDate
of a Workflow Task

#0000340
Beautiful
Webforms

Replicate Content Script Volume structure for applications

#0000186 Content Script Content Script Scheduling configuration revision

#0000123 Content Script Improvements in CSVersion

Issues Resolved in version 2.7.0¶
ID Scope Description

#0000795

It's no longer possible
to change logging
level as "script by
script" bases

#0000794 Module Suite Posgresql minor compatibility issues

#0000792 Module Suite Xml Import might generate trace files on 16.2.9->16.2.11

#0000791 Module Suite It's no longer possible to change a script logging level

#0000790 Module Suite The in-line guide contains outdated screen shots

#0000789 Beautiful Webforms
The method 'overrideFieldValidation' of form's fields is
not working when the form is loaded for the first time

#0000788 Smart Pages Smart Pages "Expand" button widget not working

#0000787 Smart Pages
Setting custom "Tile CSS classes" on Content Script tiles
is overridden if "Should load widget configuration" flag is
set

#0000779 Extension - SQL
Any input parameter that begins with the pound sign is
interpreted as a filter

43 Version 2.7.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000775 Content Script
Test Content Script command doesn't work with Classic
Link Behavior Smart View

#0000774 Beautiful Webforms
Itemreference Popup does not receive focus in case of
error

#0000772 Module Suite
Managecallback dashboard does not return callback
associated to the node's subtype

#0000771 Content Script xECM fails in creating a CWS when script is scheduled

#0000770 Content Script CSEvents scripts are executed twice

#0000769 Extension - xECM
Incorrect mapping of user data when loading users for
workspace roles

#0000766 Beautiful Webforms
Select from ViewParams widget in Library V4 does not
save selection value

#0000765 Beautiful Webforms
API method forms.addResourceDependencies(...) fails to
load dependecies if view names are specified

#0000763 Smart Pages Preview Icon on SmartUI WF Task Form

#0000762 Module Suite MS log does not work on OT EP8 (16.2.11)

#0000761 Content Script
Conflict between Enterprise Library Extension and
Advanced Version Control API

#0000760 Content Script
Base Configuration secret fields data is lost when
reloading and saving configuration

#0000759 Content Script
Content Script SQL APIs return wrong values for numeric
values that are outside of the Integer range

#0000755 Beautiful Webforms
Several issues with SmartPages SmartUI widgets. Reload
commands not properly managed.

#0000748 Extension - Rendition
Command line placeholders cause exception in
rend.genericRendition(...) API

#0000745 Script Console Missing lib dependencies for OpenJDK compatibility

#0000744 Extension - ZIP Regression in extract method of CSCompressedResource

#0000743 Script Console
Script Console Installer is extracting dependencies files
in the wrong location

#0000742 Extension - ZIP
Regression on method listContent of
CSCompressedResource

#0000741 Content Script
docman.getNodeByNickname(..) API throws an exception
if a node with that nickname does not exist.

44 Version 2.7.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000739 Smart Pages
Include WebForm widget's configuration does not accept
templating expression

#0000737 Smart Pages Rich Text rendering issues

#0000736 Smart Pages Title and SubTitle widget error in configuration panel

#0000735 Smart Pages Image Widget configuration problems

#0000734 Smart Pages
Error in loading widget configuration: Datasource is
called twice with widgetConfig=true

#0000732 Module Suite
Itemreference service does not return result if
params.term is empty (

#0000731 Smart Pages
Error in Smart Page rendering if Controller script is not
initialized

#0000730 Beautiful Webforms
Readonly mode is not properly handled by input widgets
on BWF library V2 views on Module Suite 2.6

#0000726 Beautiful Webforms
Uploading file in Space content widget clear the radio
button values in some circumstances

#0000724 Beautiful Webforms Toggle preview on Beautiful Webforms doesn't work

#0000723 Beautiful Webforms
Preview tab and attachment tab selectors not properly
rendered on SmartView Task view template

#0000722 Beautiful Webforms
Beautiful WebForms views are no longer rendering errors
raised from OTCS (Oscript) upon submissions (e.g. TKL
valid values)

#0000711 Beautiful Webforms
Currency field doesn't save value if in the view there is a
masking script

#0000699 Beautiful Webforms
docman.getNodeAuditDataPage(CSNode node) doesn't
work properly in specific circumstances

#0000695 Beautiful Webforms
The month back command on the datepicker widget
does not work properly when there is also a space
content widget

#0000684 Content Script Sending email with O365 not working

#0000682 Content Script
getClassifications of a Connected Workspace returns an
empty list

#0000671 Content Script
Unable to get attachmentList email
java.lang.NullPointerException when the attachment is a
msg file

45 Version 2.7.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Version 2.6.0 - Release notes¶

Release Date End of AMP(*) End of Life

2019-12-06 2022-12-06 2023-12-06

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.6.0.

Module Suite Compatibiliy Matrix¶
OpenText Content Server MS 2.6.0

Content Server 10.0.x

Content Server 10.5.x

Content Suite 16

Content Suite 16 EP2-EP5

Content Suite 16 EP6

Content Suite 16 EP7 X

Major Changes in version 2.6.0¶

Introduced the Smart Pages module. Smart Pages is a brand new module that aims to
simplify the creation of good-looking functional user interfaces, both as a standalone
solution and as part of the Smart View perspectives. Smart Pages features a WYSIWYG
drag-and-drop editor, similar to the one already available for Beautiful WebForms, to
enable business users to autonomously tailor their Smart View experience.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,
however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.6.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

•

46 Version 2.6.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.6.0
http://developer.answermodules.com/manuals/2.6.0
http://developer.answermodules.com/manuals/2.6.0
http://developer.answermodules.com/manuals/2.6.0

Introduced the possibility to limit the APIs a developer can utilize in Content Script
objects. Content Script script engine can now be configured so that scripts are executed
in a controlled container:Sandbox where only whitelisted APIs are usable. Whenever a
developer uses an unauthorized API, at the time the script is executed, the engine will
return an error containing information about the forbidden API and how to add
exceptions to the preamble script if using this API is inevitable . The use of prohibited
APIs may be authorized by super-users on the basis of what is specified in the preamble
of the script.

Content Script¶

Process Builder API
A new API for defining workflow maps. This new API greatly reduces the effort required to
set up a Workflow application, while opening up a brand new spectrum of possibilities.

Beautiful WebForms¶

Form Builder¶

Introduced a brand new widget library (V4). The new library makes extensive use of
modern AMD framework for Javascript resources loading. All the widgets of the new
library are SmartView ready and can be safely utilized in WebForms published in
SmartView tiles (see. Module Suite SmartView Extension)

Extension for Workflow¶

It's now possibile to execute a Content Script associated to a Workflow Map as a Workflow Event
Script.

Extension SFTP (NEW)¶

A new extension package that allows you to establish SFTP connections to remote servers.

Smart Pages (NEW)¶

Smart Pages has superseded the Module Suite extension of the Smart View. Previously available
Smart View tiles, part of the AnswerModules's library have been ported and improved.

Content Script Result: Content Script Result tile accepts now, as a datasource, both a
Content Script and a Smart Page object. Content Script Result tile supports now the
expanding behaviour, a second Content Script or Smart Page datasource can be
associated to the expanded version of the tile.
It's now possibile to configure AnswerModules' Smart View Tiles in order to pre-fetch their
configuration using a separate call to the associated Content Script datasource endpoint.

•

•

•

•

47 Version 2.6.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../working/smartui/

The Content Script datasource endpoint is in this case called with an additional
widgetConfig parameter.

All Enhancements in version 2.6.0¶
ID Scope Description

#0000668 Module Suite
Module Suite 2.5 backward compatible with OTCS 16.0.12
(2019-03)

#0000683 Content Script
Change default attrSourceType in docman.moveNode() from
Merge to Original

#0000660
Extension -
Rendition

Limit the possibility to execute arbitrary drop in

#0000633 Module Suite
Introduced security checks to prevent the developers from
accidentally damaging the system

#0000092
Beautiful
Webforms

Add possibility to bind form field "editable" flag to a variable in
binding

#0000566 Content Script Enable CS to be used as EventScripts in WF

#0000669 Module Suite
Remove Manage Content Script Extension Packages function
from Administration pages

#0000646 Content Script Request to support SFTP

#0000656
Beautiful
Webforms

Added support for WYSIWYG editors in FormBuilder widgets
configuration panel

#0000047 Content Script
It's now possible to set create custom properties of type
hidden in Base Configuration

#0000658 Extension - Docx
Is now possible to force Excel to update internal formulas
upon file opening

Issues Resolved in version 2.6.0¶
ID Scope Description

#0000639
Beautiful
Webforms

onChangeAction set on Smart DropDown causes a reloads loop

#0000687
Extension -
eSign

reset ESign value in the workflow step

#0000379
Beautiful
Webforms

Submit Button in new Beautiful WebForms view does not allow to
select icon

48 Version 2.6.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000070
Beautiful
Webforms

Opening a Beautiful Form View with Form Builder gives error 500
if Form Template is empty

#0000185 Content Script Typo in error message for RunAs functionality

#0000467 Beautiful
Webforms Checkbox widgets are not initialized correctly when
creating a new view

#0000528
Extension -
Docx

Error logs when reading core docx properties that have not been
set

#0000626
Beautiful
Webforms

Clear button hides when there are more lines in the CS
Modernizzed Classic UI template

#0000628
Beautiful
Webforms

User icons in the UserByLogin widget are not displayed correctly
in V3 Smart View and Smart View Task template

#0000667 Module Suite Error URL in online Documentation Import and Upgrade tool

#0000638
Beautiful
Webforms

Space Content does not allow adding new documents with IE

#0000651 Module Suite Errors in the links in the Extension for ClassicUI online guide

#0000685 Content Script unScheduleContentScript (CSNode node) does not work

#0000650 Content Script Querybuilder does not find archived workflows

#0000671 Content Script
Unable to get attachmentList email
java.lang.NullPointerException when the attachment is a msg file

#0000692
Beautiful
Webforms

Drop area widget fails to initialize

#0000657 Content Script Accessing node content randomly returns an empty file

#0000665 Content Script
Issue with DAPI.GetNode cache causes wrong node data to be
loaded in specific circumstances

#0000666
Extension -
PDF

Errors deleting temp files after PDF manipulations

#0000659
Extension -
Docx

POI library compatibility issue with OTCS 16.2.8

Version 2.5.0 - Release notes¶

Release Date End of AMP(*) End of Life

2019-05-23 2022-05-23 2023-05-23

49 Version 2.5.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.5.0.

Module Suite Compatibiliy Matrix¶
OpenText Content Server MS 2.5.0

Content Server 10.0.x

Content Server 10.5.x

Content Suite 16

Content Suite 16 EP2-EP5

Content Suite 16 EP6 X

Major Changes in version 2.5.0 SP1¶

Introduced support for PostgreSQL and SAP Hana Databases

Major Changes in version 2.5.0¶

Upgraded numerous third party dependencies
Introduced support to OpenJK11

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,
however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.5.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

•

OpenText Content Suite 16 EP6

Content Suite 16 EP6 introduces some major breaking changes on the internal Content Server application. Changes

have been applied on the application's layout as well as on the Java related-components of the application. These
changes have been reflected on Module Suite leading to the decision of making the latest version of our product
only available on OpenText Content Suite Platform 16 EP6.

•
•

50 Version 2.5.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.5.0
http://developer.answermodules.com/manuals/2.5.0
http://developer.answermodules.com/manuals/2.5.0
http://developer.answermodules.com/manuals/2.5.0

Improved, by over 15% Beautiful WebForms programmatic rendering performances
Introduced a new logging feature that allows the creation of isolated log files
Introduced new HTML to PDF rendition engine based on Google Puppeteer can be utilized
in place of Wkhtmltopdf
Improved usability of Module Suite IDEs

Content Script¶

Extension Engeenering (NEW)¶

Programmatically manage creation for CAD documents

All Enhancements in version 2.5.0¶
ID Scope Description

#0000640 Content Script Self support variable in Content Script is now always available

#0000620 Module Suite
Remove link to legacy upgrade component library tool from Base
Configuration

#0000629
Beautiful
Webforms

New API to get PDF size

#0000614 Content Script
Extend PDF Watermark color support to include hexadecimal
colors

#0000621
Beautiful
Webforms

Server side validation errors are not properly displayed unless
the velocity macro is overridden by an Errors widget

Issues Resolved in version 2.5.0¶
ID Scope Description

#0000641
Content
Script

Fix issue with #csmenu macro that was preventing the macro from
working properly

#0000604 Module Suite Error in online documentation for Smart Dropdown fields

#0000623
Content
Script

Content Script scheduling weekdays are incorrectly mapped

#0000630
Beautiful
Webforms

Date field (in a Set field) not properly initialized when loaded
through CS API. Time information is missing.

#0000636
Beautiful
Webforms

Phones widget validation return error if the field is empty

#0000615
Content
Script

Synch callbacks are randomly not executed immediately after
services restart

•
•
•

•

51 Version 2.5.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000616
Content
Script

Code search shortcut CTRL + F does not work

#0000622
Beautiful
Webforms

The following error is reported in the MS master log file ERROR
[rendering] Left side ($field.getValidationStatus().size())

#0000619
Content
Script

"template" service is not able to load resource bundles from OTCS
when used in a Content Script

#0000618
Beautiful
Webforms

Included subviews are not updated upon modification

#0000617
Beautiful
Webforms

Submit Button with Params widget is no longer passing parameter
value in library version 2.3

#0000601
Content
Script

Form SET data is lost when using workflow.startWorkflow(..) API

#0000600
Content
Script

Set properties on Word Documents may fail to update existing
properties

#0000599
Extension -
Docx

Cell style not preserved on cell value update

#0000603
Content
Script

Nickname is cleared from node when node.update() is invoked

#0000611
Beautiful
Webforms

Pattern validation rule is invalid if the pattern contains commas

#0000610
Beautiful
Webforms

Server side validation for "Alpha" and "Alphanumeric" rules not
working as expected

#0000612
Beautiful
Webforms

Field Length validation not working on Multiline fields when form
is loaded using forms.getFormInfo(..) API

Version 2.4.0 - Release notes¶

Release Date End of AMP(*) End of Life

2018-11-09 2021-11-09 2022-11-09

(*) Active Maintenance Period

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,

52 Version 2.4.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Modules Suite version 2.4.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.4.0

Content Server 10.0.x

Content Server 10.5.x X

Content Suite 16 X

Content Suite 16 EP2-EP5 X

Content Suite 16 EP6

Major Changes in version 2.4.0¶

Dropped support for JRE version 7

Upgraded numerous third party dependencies
Improved isolation of Java components with respect to the environments
Improved, by over 30%, the modules overall performances
Introduced new APIs to support large PDF documents manipulation without encountering
excessive system memory consumption related issues
Introduced the possibility to assign a custom priority to Content Scripts scheduled using
the DA framework
Cache service now supports the direct caching of ServiceContextAware objects (e.g.
CSNode, CSUser, CSGroup, CSFolder...) objects

however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.4.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

•

JRE 7 no longer supported

Starting with update 2015-09 (https://knowledge.opentext.com/knowledge/cs.dll/info/62452805) OpenText Content
Server is shipped with a JRE version 8. Starting from Module Suite version 2.4 support for JRE 7 is discontinued.
Customers willing to install Module Suite 2.4 are invited to verify that this requirement (JRE >=8) is satisfied by their
Content Suite platform.

•
•
•
•

•

•

53 Version 2.4.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.4.0
http://developer.answermodules.com/manuals/2.4.0
http://developer.answermodules.com/manuals/2.4.0
http://developer.answermodules.com/manuals/2.4.0
https://knowledge.opentext.com/knowledge/cs.dll/info/62452805
https://knowledge.opentext.com/knowledge/cs.dll/info/62452805

Beautiful WebForms¶

Significant reduction, approximately 50%, of the View’s footprint on the database
Introduced numerous new widgets
Introduced the concept of Layout: widgets can now contain additional widgets and
therefore be utilized to better organize the form's page

Form Builder¶

Introduced a brand new widget library (V3). The new library makes extensive use of
modern AMD framework for Javascript resources loading. All the widgets of the new
library are SmartView ready and can be safely utilized in WebForms published in
SmartView tiles (see. Module Suite SmartView Extension)
Introduced 'in line text editor' functionality in the FormBuilder. Form field labels and
static text can be edited directly from the SmartEditor (no need to open the configuration
panel)
Improved functionality for repositioning widgets in the View.
Simplified the resizing of widgets and labels. Any widget or label dimensions can now be
determined through simple actions performed on the same, within the SmartEditor.
Improved the usability of the configuration panel. Configuration options are now
organized in tabs, form's fields can now be "searched" by name or type.
Introduced a new View preview feature directly in the editor.
Introduced the functionality to roll-back widget configuration changes during an editing
session.

Content Script¶

Extension Package for Blazon (NEW)¶

Programmatically manage rendition jobs on Blazon

Extension Package for the integration with S3 by AWS (NEW)¶

Extension Package for xECM (NEW)¶

Utilize Content Script to programmatically create and administer Connected Workspaces

Extension Package for Office documents¶

Several enhancements have been introduced:

It is now possible to change the width of the columns in an Excel file
It is now possible to merge Word files
Improved support for the systematic creation/editing of Word files

•
•
•

•

•

•
•

•

•
•

•
•
•

54 Version 2.4.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../working/smartui/

All Enhancements in version 2.4.0¶
ID Scope Description

#0000598
Content
Script

It's now possibile to embed resources into CSEmail (e.g. a logo
image)

#0000597
Extension -
Docx

It's now possibile to merge multiple Word documents togheter

#0000596
Extension -
Docx

It's now possibile to change the size of Excel columns

#0000594
Module
Suite

Cache service now supports the direct caching of CSNode objects

#0000593
Content
Script

Objects extending ServiceContextAwareObject are now
Serializabile. Before to attempt to serialize them call the detach
method to

#0000592
Content
Script

CSNode's metadata are now always accessible no matter which
method as been used to load the node

#0000588
Content
Script

It's now possibile to change the priority for scheduled tasks

#0000585
Extension -
AmGui

AddItems override is not working on Compound Documents

#0000570
Content
Script

Add support form Windows authentication in CSWS

#0000562
Module
Suite

REST APIs: Being able to set StatusCode on success, Content Type
on error

#0000590
Module
Suite

CSMultiButtons in collections

Issues Resolved in version 2.4.0¶
ID Scope Description

#0000589
Beautiful
Webforms

CreateForm method does not work when submission mechanism
= WORKFLOW

#0000583
Beautiful
Webforms

Multiple collapsible Panel Containers collapse wrong panel when
clicked

#0000582
Beautiful
Webforms

Passing an empty string as value for a field of type "Date", results
in wrong value stored in the form

55 Version 2.4.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000578
Beautiful
Webforms

Under undetermined circumstances getTemplate function causes
a trace file's generation

#0000576 Content Script
pat162000373_CS64_WIN breaks setting major/minor version and
num of versions to keep through CS

#0000574 Script Console
Memory leak in CommandLauncherJob if the scheduled script
performs actions related to RBWF

#0000568 Content Script
It's not possible to programmatically start a WF having
WebReport WP enabled

#0000595
Beautiful
Webforms

Validation of Views' source code is not working and a lot of error
messages are generated within the logfile

#0000591 Content Script
It's not possible to update a CSUser without providing a new
password for the same

#0000584
Beautiful
Webforms

PrimitiveField contains a debugging instruction which is logging
at error level

#0000581
Extension -
Docx

xlsx.getAllWorksheets() API returns an empty list

#0000579 Content Script
Unable to send on a CS Workflow task configured to run in
background if a previous run of the same returned an error

#0000577 Content Script Saving script fails if script body is empty

#0000575 Content Script Templating service error occurs when using Escape XML utility

Version 2.3.0 - Release notes¶

Release Date End of AMP(*) End of Life

2017-12-22 2020-12-22 2021-12-22

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Module Suite version 2.3.0.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,
however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.3.0)

56 Version 2.3.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.3.0
http://developer.answermodules.com/manuals/2.3.0
http://developer.answermodules.com/manuals/2.3.0
http://developer.answermodules.com/manuals/2.3.0

PDF Version

Major Changes in version 2.3.0¶

Beautiful WebForms Form Builder¶

FormBuilder widgets library has been deeply revised in order to further simplify WebForm views
creation.

Enhanced support for Internationalization¶

The support for forms' views internationalization has been improved. It's now possible to mark
labels and other widgets' properties for being inserted into localization files. Localization files
can now even be stored directly on Content Server.

Inline FormTemplate Manipulation¶

FormBuilder now supports the inline creation of fields of type “Set”.

Content Script¶

Auditable and indexable¶

Content Script objects are now indexable (upon proper configuration in the Base Configuration).

Content Script execution is now auditable (upon proper configuration in the Base
Configuration).

Scheduling and Callbacks¶

Several performance enhancement related to script scheduling and both for synchronous and
asynchronous callbacks.

All Enhancements in version 2.3.0¶
ID Scope Description

#0000541 Content Script Determine if a category needs to be upgraded

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

57 Version 2.3.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../images/media/ReleaseNotes_ModuleSuite_2.3.0.pdf

ID Scope Description

#0000545
Extension -
AdLib

Support overriding of job ticket output folder path

#0000540 Content Script
It's now possibile to reduce the DA Load related to CSEvents
management

#0000539 Content Script
It's now possibile to disable CSEvents (preventing the system to
record the event in the DA framework)

#0000538
Beautiful
Webforms

FormBuilder now supports Set creation

#0000523
Beautiful
Webforms

Form Builder should be using the "advanceMode" flag to decide
whether to display the visual builder or the source code editor

#0000524
Beautiful
Webforms

Form Builder layout should be preserved for BWF views edited
with source code editor

#0000522
Beautiful
Webforms

Form Builder should be initialized with last available Form
Builder layout when opening a manually edited view

#0000495 Module Suite Being able to override WebNodeActions using CSVolume scripts

#0000527 Content Script Improve UI for importing and upgrading ModuleSuite Library

#0000532 Content Script Search service API behavior changes with OTCS 16.2 release

#0000518 Module Suite
Content Script workflow steps can now be executed through the
Workflow agent

#0000525 Content Script New API to access valid values list for Category popup fields

#0000535 Module Suite Optimized FormView footprint on database

#0000533 Content Script
Autocompletion provides now additional information regarding
existing APIs

#0000512
Extension -
Docx

Initial support for PPTX files

#0000530
Beautiful
Webforms

Is now possible to use SWF to create generic purposes forms

#0000511
Beautiful
Webforms

Smart Drop Down DB Lookup - javascript performs too many
unnecessary async calls

#0000499 Content Script Make Content Script indexable

#0000500
Extension -
Docx

Being able to update SpreadSheet and single cell formulas

#0000497 Content Script
Being able to execute a LiveReport through the "Fast" interface
for SQL

58 Version 2.3.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Issues Resolved in version 2.3.0¶
ID Scope Description

#0000548
Beautiful
Webforms

The "showtime" flag is not correctly handled in Date fields for
forms loaded with forms.getWorkFlowForm(..) API

#0000542
Content
Script

Issues in creating new binders with CSSynchEvents enabled

#0000547
Content
Script

Error setting FromDate and ToDate in Physical Object Template

#0000516
Beautiful
Webforms

Checkbox component not correctly initialized when creating a
new BWF view

#0000537
Beautiful
Webforms

the formToMap method of the FormService might rise exceptions
parsing dates

#0000519
Content
Script

Default value of Content Script static variables causes
"Compilation Failed" warning to be added at every save

#0000504
Beautiful
Webforms

Currency Field doesn't trigger onChangeAction in IE

#0000492
Beautiful
Webforms

Javascript init script for Datatable widget is missing

#0000496
Beautiful
Webforms

ADN Widget's javascript init function has the "support" and
"context" variables hard-coded

#0000526
Beautiful
Webforms

Request parameters are not passed to Form when executed
through nickname

#0000509
Content
Script

Regression in GCSCategory constructor derived from #0000490

#0000513
Beautiful
Webforms

"Item reference Popup" component search error after update to
Module Suite 2.2

#0000534
Content
Script

Content Script editor automatic code validation needs resource
optimization

#0000529
Beautiful
Webforms

Error exporting form view with 'None' value selected in the 'Select
Template' option in Form Builder

#0000536 Module Suite
Content Script scheduling is not working properly on 16 and 16.2
(unable to un-schedule)

#0000517
Beautiful
Webforms

Minor visual issues in top bar buttons in Form Builder and
Content Script Editor

#0000520
Content
Script

"Test" button in Content Script Editor saves the current code but
executes the previous version

59 Version 2.3.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000510
Content
Script

Managecallbacks script might fail with case-sensitive databases

#0000490
Content
Script

GCSCategory is now CSNode aware, thus is possible to drive
inheritance for sub nodes

#0000488
Content
Script

docman.getNodesInContainer(..) API fails if target node contains a
virtual folder

#0000491
Content
Script

Virtual Folder nodes are not managed properly on CS16

#0000506
Content
Script

NextUrl parameter is not passed to the execution context when
executing a script using the open command

#0000508
Content
Script

docman.rhRequest(..) API calls fail if Trusted Referring Websites
are set in Content Server Security Parameters Admin page

#0000505
Beautiful
Webforms

Form field "removeField(..)" API performs a wrong check on index

#0000507
Beautiful
Webforms

Change event handlers are triggered twice

#0000503
Content
Script

Execution of runCS instruction fails in callback-scripts caused by a
NPE relative to CSVARS

#0000501
Beautiful
Webforms

FormBuilder might fail to load on huge views

#0000494
Content
Script

createRendableForm(..) API returns invalid content if IIS
Application Request Routing is configured (for Brava)

#0000498
Content
Script

OScript deserialization might fail for RecArrays

Version 2.2.0 - Release notes¶

Release Date End of AMP(*) End of Life

2017-05-15 2020-05-15 2021-05-15

(*) Active Maintenance Period

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best
to ensure that, where necessary, is made clear that the information presented is only applicable to specific versions,

60 Version 2.2.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Module Suite version 2.2.0.

PDF Version

Major Changes in version 2.2.0¶

License¶

Whenever the number of licensed seats are exceeded, the Module Suite’s licensing manager
starts logging a warning message for every operation performed.

Beautiful WebForms Form Builder¶

FormBuilder has been deeply revised in order to further simplify WebForm views creation.

CHEH Snippets¶

The feature that allows a Form designer to inject Content Script snippets into CLEH scripts
(OnLoad, PreSubmit, OnSubmit) now depends on the widget's configuration itself. In other
words, any change applied to the widget's configuration will trigger an equivalent change into
the injected piece of Content Script.

This behavior can be disabled either through the “Auto-inject code” switch, displayed at the
very top of any widget’s configuration panel or deleting the synchronization hash injected as
part of the header of all the CLEH snippets.

Widget Visibility¶

A simplified widget-visibility rule builder can now be used to determine when a widget should
be displayed in the form.

Buttons’ Icons and Colors¶

Easy to use icon-color selectors have been introduced for button-widgets.

however if you are looking for this version-specific documentation, you can find it here (http://
developer.answermodules.com/manuals/2.2.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

61 Version 2.2.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/2.2.0
http://developer.answermodules.com/manuals/2.2.0
http://developer.answermodules.com/manuals/2.2.0
http://developer.answermodules.com/manuals/2.2.0
../../images/media/ReleaseNotes_ModuleSuite_2.3.0.pdf

Inline FormTemplate Manipulation¶

Add functionality that allows Form Template manipulation (add new fields) directly from within
the FormBuilder.

New And Updated Widgets¶

Currency, Include SmartUI Widget, Chart, DocuSign, Handsontable, DropDown DB Lookup, Set
ViewParams Variable, View Template Logo, Smart DropDown DB Lookup, Include Script Result,
Redirect to URL, Workflow Comments, Custom Action Button, Submit Button With Param

Field default value¶

Add functionality that allows setting the default value displayed by the form widgets

OnLoad script returns JSON Data¶

CLEH script management has been modified in order to allow OnLoad script to return JSON
data, thus to be used for implementing Ajax-enabled backend services for BWF-widgets (e.g.
Handsontable widget).

New Content Script APIs¶

New Content Script APIs and API extension packages have been released. Collaboration APIs
have been extensively revised and simplified. New extension packages include:

DocBuilder¶

Allow developers to programmatically produce PDF and Word files. The new APIs are accessed
through the new “docbuilder” service endpoint, available upon installation of the extension
package.

Callback Scripts¶

Synchronous Callback Scripts are now executed in isolated context (a separate execution

context for each script). To switch back to the previous implementation set the 3rd bit of the
“amcs.core.debugEnabled” configuration bitmask to one (e.g. amcs.core.debugEnabled=4).

All Enhancements in version 2.2.0¶
ID Scope Description

#0000431
Content
Script

Templating service is wrapping CS Context in Templating Context
when using subviews in form views

62 Version 2.2.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000440
Beautiful
WebForms

Improved robustness of Jquery Interdependencies widget

#0000474
Beautiful
WebForms

Improved accuracy for Form to PDF rendering through HTML to
PDF rendition

#0000466
Beautiful
WebForms

User by Login revised in order to avoid preload of all users if no
filter is selected

#0000460
Content
Script

The Callback-Scripts management class has been refactored in
order to switch from a single execution context mode to a fully
separated set of contexts

#0000465
Beautiful
WebForms

Enhance visibility of CSS grid columns

#0000445 Mail Service
Mail Service - Added support for Receipt Request and other SMTP
headers

#0000446 Mail Service Mail Service - Added support for BCC addresses

#0000485 GUI Service
SQLQueryRowProvider features methods for executing paginated
SQL Queries

#0000484
Content
Script

SqlService ext-pack features methods for executing paginated SQL
Queries

#0000469
Beautiful
WebForms

CLEH widgets snippets are now standard CS snippets, evaluated
using widget’s configuration

#0000478
Content
Script

Major enhancement for Collaboration service

#0000444
Beautiful
WebForms

New widget for currencies

#0000463
Content
Script

The information related with the original user ID and username
are now available in the script Execution Context

#0000475
Content
Script

Improved performances of Templating service - producePDF(..) API

Issues Resolved in version 2.2.0¶
ID Scope Description

#0000429
Beautiful
WebForms

am_printFix function in am_init file is not working properly (Form to
PDF)

#0000439
Beautiful
WebForms

Jquery interdependencies widget does not support binding to Radio
Basic widget

63 Version 2.2.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000457
Beautiful
WebForms

JS Conditional Container v1 escapes "operator" configuration
causing a javascript error in client.

#0000438
Beautiful
WebForms

User by Login widget not working correctly on environments with
case sensitive database

#0000459
Module
Suite

Wrong documentation in Base Configuration for
amcs.core.callbackSynchEventsEnabled flag

#0000473
Beautiful
WebForms

am_CssViewDependecies and am_JsViewDependecies variables in
the viewParams map are overridden whenever a view invoke a CLEH
action (the information regarding Form’s static resources is lost)

#0000476
Beautiful
WebForms

PDFPreview tool not working on OTCS 16.0.3

#0000468
Beautiful
WebForms

Default Submit Button widget is not initialized correctly when
creating a new view

#0000442
Content
Script

Email setCharset(..) API has wrong help text

#0000441
Content
Script

Email "distribute" functionality sends same notification multiple
times to the same recipients

#0000481
Content
Script

Docman copyNode(..) API adds a new version to copied node as
default behavior

#0000482
Content
Script

Docman moveNode(..) API adds a new version to node as default
behavior

#0000483
Content
Script

Docman copyNode(..) API only copies the last version of the node
as default behavior

#0000437
Content
Script

Reading excel cell values for spreadsheet columns after AA returns
null values

#0000452
Content
Script

Enabling Content Script scheduling with default configuration fails

#0000428
Content
Script

Content Script autocomplete function fails if script csvars is empty

#0000454 GUI Service Performance issues due to a regression in version 2.1

#0000464
Content
Script

Regression in ServiceWrapperFactory

#0000453
Content
Script

Issues using CSSearchQueryBuilder when search slices have been
renamed

64 Version 2.2.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000479
Content
Script

It's now possibile to proper cast a CSNode to its subclasses (e.g.
node as CSDocument)

#0000477
Beautiful
WebForms

Empty value for amSaveValues property of form objects returned by
getFormInfo method

#0000472 ESign Unable to reject on multi-user step

#0000471
Beautiful
WebForms

Mapping Script widget attached to Smart Dropdown clear fields on
reload if AJAX initialization is disabled on Smart Dropdown

#0000462
Content
Script

Callback scripts: NodeCreate, NodeCreatePre, NodeUpdate are not
managing rollback properly

#0000461
Content
Script

Wrong parent-callback event registered on NodeCreatePre event

#0000451
Content
Script

Request parameters are not passed to Content Script when
executed through nickname

#0000472 ESign ESign Service is not working properly with ModuleSuite version > 2.1

#0000448
Beautiful
WebForms

ESign Widget is not working properly with ModuleSuite version > 2.1

#0000447
Beautiful
WebForms

amSaveValues are not updated on the basis of the form object

Version 2.1.0 - Release notes¶

Release Date End of AMP(*) End of Life

2016-11-16 2019-11-16 2020-11-16

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Module Suite version 2.1.0.

PDF Version

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

65 Version 2.1.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../images/media/ReleaseNotes_ModuleSuite_2.3.0.pdf

Major Changes in version 2.1.0¶

License¶

Module Suite’s activation license now keeps in consideration: the system’s fingerprint and the
number of purchased seats.

Beautiful WebForms library of widgets¶

The Beautiful WebForms library of input widgets has been significantly improved and simplified.
The library comprises now more than ninety elements. The widgets/view template architecture
has been revised in order to speed up and favor the development of new input widgets by
customers and partners. Widgets’ external dependencies can now be easily tracked allowing
developer to focus only on core functionalities.

Beautiful WebForms Studio¶

Beautiful WebForm Studio wizard is now shipped with Module Suite. The Studio can be accessed
directly from the Content Script Volumes (CSVolume:CSTools:Beautiful WebForms Studio).

New Content Script APIs¶

New Content Script APIs and API extension packages have been released. New extension
packages include:

Web-Services API extension pack¶

Content Script now features a complete set of APIs for consuming both REST and SOAP web
services. The new APIs are accessed through the new “csws” service endpoint, available upon
installation of the extension package.

All Enhancements in version 2.1.0¶
ID Scope Description

#0000427 Script Console
It is now possible to export a Tomcat 8 compatible configuration
using exportWar.cs script

#0000413
Beautiful
Webforms

Introduce a simpler way of managing the loading of static
dependencies for form views

#0000423
Beautiful
Webforms

PDF web viewer tool based on pdf.js

#0000418
Beautiful
Webforms

New validation constraint: Content Script (remote invocation)

66 Version 2.1.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000410
Beautiful
Webforms

Support for TKL and ADN TKL form fields

#0000414 Content Script
Is now possible to execute a Content Script programmatically.
New API: docman.runContentScript()

#0000377 Content Script Add possibility to un-assign task

#0000380 Content Script New API: CSUser.getDepartmentGroup()

#0000381 Content Script New API: users.getGroup(Long groupID)

#0000382 Content Script Add library snippet for Smart Drop Down backend service

#0000388
Beautiful
Webforms

When loading a submitted form with date fields with the "show
time" flag active seconds information is lost.

#0000392
Beautiful
Webforms

Add support for form page repositioning to first error when a
client side validation error occurs.

#0000393
Beautiful
Webforms

Read-only checkbox layout should be similar to active checkbox

Issues Resolved in version 2.1.0¶
ID Scope Description

#0000422
Beautiful
Webforms

Checkbox widgets set to "readonly" lose the selected value on
page reload

#0000421
Beautiful
Webforms

Radio components in forms using BWF library V1 not working
after upgrade from version 1.7.0 to 2.0

#0000426
Beautiful
Webforms

Multiple collapsible Panel Containers included in sub-views
collapse wrong panel when clicked

#0000425
Extension -
LDAP

LDAP Service fails to initialize profile with 'secure' parameter set
to 'false'

#0000419
Beautiful
Webforms

Submit button clicked after the execution of an action which
returns a file keep triggering the same action

#0000411
Beautiful
Webforms

Regression in version 2.0.0: V1 am_init.js file has been overridden

#0000416
Beautiful
Webforms

OnChange Script BWF snippet does not work with fields with
multiplicity higher than one

#0000412
Content
Script

Sql Service ignores parameters of type GString

67 Version 2.1.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000383
Beautiful
Webforms

OnChangeAction snippet does not trigger with Radio Basic
components

#0000389
Beautiful
Webforms

If a redirect instruction is used in the AfterSubmit script of a form
workflow step the workflow's step won't be completed

#0000385
Beautiful
Webforms

When loading a submitted form with date fields with the "show
time" flag active time information is lost

#0000394
Extension -
Docx

Field updating on Office documents fails when there are
properties with spaces in the property name

#0000408
Content
Script

Inline API Docs panel in Content Script Editor minimizes after
clicking on any link

#0000395
Extension -
Docx

Field updating on Office documents fails when there are
properties with long property name

#0000397
Content
Script

Outdated configuration details for callbacks in Content Script
inline documentation

#0000399
Beautiful
Webforms

Selecting left or right position for labels in components in a Grid
(Bravo) container causes a wrong positioning of the labels

#0000400
Extension -
Docx

Error creating an empty XLSX spreadsheet

#0000398
Content
Script

Error with template.producePDF(...) when a File is passed as the
template.

#0000401
Content
Script

Accessing admin pages generates a trace file when you have an
error coming from underlying DBMS

#0000404 Module Suite
CSCategory getAttributes returns just the name for attributes
inside a set

#0000403
Content
Script

Not able to rollback a transaction using nodecallbacks

#0000407
Beautiful
Webforms

Form fields requireness is not properly managed when retrieving
form object with forms.getFormInfo API

#0000405
Content
Script

Disable Weblingo overwrite without having to rise an Exception

#0000406
Content
Script

template.producePDF(..) API causes a resource leak

#0000386
Beautiful
Webforms

Wrong values in submitted checkbox and user fields when using
the forms.submitForm(..) API

68 Version 2.1.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000387
Content
Script

It's no longer possible to use a Content Script service as a
Content Server standard REST

Content
Script

Impersonate ObjectFactory is not working (only Admin can use
the feature)

#0000390
Content
Script

ResourceManager rises an NPE when amcs.core.tempFilePath has
not been specified

Version 2.0.0 - Release notes¶

Release Date End of AMP(*) End of Life

2016-07-22 2019-07-22 2020-07-22

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Module Suite version 2.0.0.

PDF Version

Major Changes in version 2.0.0¶

Support for Content Server 16¶

Module Suite 2.0.0 now includes support for Content Server version 16.

Content Script objects are available and executable form the new Smart UI.

Content Scripts can be used to build Smart UI tiles, and are available within the Perspective
Builder when creating new Smart UI perspectives.

Currently supported platforms include:

Content Server 10.0.x

Content Server 10.5.x

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

•

•

69 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../images/media/ReleaseNotes_ModuleSuite_2.3.0.pdf

Content Server 16

Completely renewed development environments and editors¶

All Module Suite integrated developments environments, including

Beautiful WebForms Form Builder,

Content Script Editor,

Template Editor,

Content Script Snippet Editor,

Form Widget Editor

have been completely renewed, and ergonomics have been greatly improved.

Beautiful WebForms Form Builder now features additional controls for multiple selection when
positioning, editing or deleting widgets in the working area, as well as support for the new
functionalities of the widgets in the library. Important functionalities (template selection,
associated Content Script editing) have been made directly accessible from the main editor
panel.

Content Script Editor content assist functionalities have been improved.

Full revamp of Beautiful WebForms widgets and templates libraries¶

Form Widget in the Beautiful WebForms component library now feature

Component libraries are now versioned in super-libraries. Module Suite 2.0.0 ships with
library version 2. Version 1 corresponds to widgets available in Module Suite 1.7. Users are
free to create their own library versions.

All widgets have been refactored to provide a clean separation between presentation and
dynamic behavior (to ensure compatibility with new CS16 Smart UI)

Complex widgets which require backend scripting code now feature the possibility to
automatically inject the custom code (reduces need to manually edit scripts)

All widgets have seen their customization capabilities improved and extended.

New Content Script APIs¶

New Content Script APIs and API extension packages have been released, for a total of 400+
new documented APIs. New extension packages include:

•

•

•

•

•

•

•

•

•

•

70 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Records Management API extension pack¶

Content Script now features a complete set of APIs for Content Server Records Management.
The new APIs are accessed through the new “recman” service endpoint, available upon
installation of the extension package.

Physical Objects API extension pack¶

Content Script now features a complete set of APIs for Content Server Physical Objects. The new
APIs are accessed through the new “physobj” service endpoint, available upon installation of
the extension package.

LDAP integration API extension pack¶

Content Script now features a basic set of APIs that allow to perform queries on any LDAP
server. The new APIs are accessed through the new “ldap” service endpoint, available upon
installation of the extension package.

SQL extension pack¶

Content Script now features a new API to perform database queries against the Content Server
database, as well as over external databases. The new API provides support for query parameter
bindings and SQL expression templates, and can be accessed through the new “sql” service
endpoint, available upon installation of the extension package.

Content Script PDF API improvements¶

A new set of APIs is now available within the “pdf” service endpoint. The new APIs allow to
interact with PDF form documents, by extracting form information and data, automatically filling
in form fields, and finalizing a PDF form.

Third party dependencies upgrade¶

Most third party dependencies included in the Module Suite release have been updated to the
latest stable release. A complete list of the dependencies can be found within each module’s
installation folder.

Weblingo override functionality¶

A new advanced functionality, which allows administrators to configure overriding of any
Content Server weblingo file, is now available as part of Content Script version 2.0.0.

71 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Cross-script referencing¶

Any Content Script object that has been assigned a nickname within a specific namespace
(“CSxxxx”) can now be referenced directly by nickname within a second Content Script. This
functionality allows, for example, to create function libraries without the overhead of executing
the second script every time.

Save views as Widgets¶

Views created with the Beautiful WebForms builder can now be saved as a custom “composite”
widgets and reused through the usual drag & drop process within another view. When such a
composite widget is dropped within a view, it will be split in its basic parts, and each part will
be configurable separately.

Composite widgets can be managed within the widget library as standard Beautiful WebForms
widgets.

Workflow Query builder¶

A new workflow query builder is available as part of the “workflow” service APIs. The builder is
intended to simplify the interaction with the workflow search service.

All Enhancements in version 2.0.0¶
ID Scope Description

#0000306 Module Suite
Module Suite objects are now fully compatible with Content
Server transport

#0000307 Script Console It's now possible to schedule jobs while the console is offline

#0000322
Extension -
Forms

Form Package attachments are now available in Remoted
Workflow Forms and submitted forms (seq)

#0000332
Beautiful
Webforms

Workflow Comments form snippet now includes CLEH
configuration documentation

#0000333 Content Script Content Script objects are now restricted objects by default

#0000334 Content Script GCSSetAttribute and GCSPrimitiveAttribute now support each

#0000338 Content Script
Third party javascript libraries have been updated to latest
stable version.

#0000339
Beautiful
Webforms

Third party javascript libraries have been updated to latest
stable version.

#0000342 Content Script
It is now possible to set a group as group leader using the
setLeader(..) API on the CSGroup object.

72 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000344
Beautiful
Webforms

It's now possibile to convert form fields values to Dates

#0000345
Beautiful
Webforms

Javascripts and Css resources can now be organized and
included in Form Templates respecting dependencies.

#0000346
Beautiful
Webforms

Form widget can now specify their own static dependencies (js,
css)

#0000347 Content Script
It's now possible to create ANSTemplateFolder objects
programmatically

#0000348
Beautiful
Webforms

It's now possible to organize form widgets and form templates in
libraries

#0000349
Extension -
eSign

It's now possible to set the URL where to redirect navigation
after having performed the sign step

#0000350 Script Console
Introduced the possibility to customize embedded jetty
behaviour with init script

#0000351 Content Script
Enabled the possibility to control the mimetype of files returned
as attachment

#0000352 Content Script Optimize the CSResource file names.

#0000353 Content Script Optimize the usage of "self" shortcut

#0000358 Module Suite
Initialization of logging system is now performed
programmatically

#0000359 Module Suite
CSNodes can now be exported in JSON (format compatible with
REST APIs)

#0000360 Content Script Is now possible to retrieve the full path for a node

#0000367 Module Suite
Is now possible to build queries on workflows data
programmatially

#0000372
Extension -
Forms

Script Console now supports forms built with Beautiful
WebForms libraries V2

#0000374 Script Console Added authentication layer on Script Console web interfaces

#0000375 Script Console
Session cookies are now enabled by default in application server
configuration

Issues Resolved in version 2.0.0¶
ID Scope Description

#0000305 Module Suite Content Script TemplateFolder webnode naming conflict

73 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000308
Script
Console

The script used to demonstrate the Console's internal scheduling
features contains an error.

#0000309
Script
Console

Java Classloader conflict running console as an standalone
ApplicationServer application

#0000311
Content
Script

SQL queries used to implement CSVolume caching have issues
with case sensitive database installation

#0000312
Content
Script

RunCS is triggering unnecessary script recompilation that might
impact performances

#0000313
Content
Script

Error when accessing property priority of CSWorkflowAssignedTask

#0000314
Content
Script

SSL Error occurs when using RHOmnia proxy under https

#0000315
Extension -
Docx

importMetadata API in xlsx service does not handle exceptions
correctly

#0000316
Extension -
Docx

importMetadata API in xlsx service attempts to process lines with
empty dataID column

#0000317
Content
Script

Class loading issues on Member Services (Content Server 10.0)

#0000318
Content
Script

Unexpected error may arise when executing a custom REST service

#0000319
Content
Script

Content Script callback scripts are sometimes invoked twice

#0000320
Extension -
Forms

Remote WebForms submission fails silently when application
server and script console installation paths are on different drives

#0000324
Extension -
Forms

View switching is not possible within Remote WebForms OnLoad
scripts

#0000325
Extension -
Forms

Checkbox widgets in Remote webforms do not handle events
correctly

#0000326
Beautiful
Webforms

Beautiful WebForms online documentation incorrectly references
a non-existing "form.setValidationError(..)" API

#0000327
Beautiful
Webforms

Workflow attachments folder identifier is not available in the form
object when used in a user step

#0000328
Beautiful
Webforms

The "Forms.createRendableForm(..)" API calls fail if target form
object is not in the current script's context scope

74 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000329
Content
Script

Service calls fail when executed from different thread spawned
with Thread.start

#0000330
Beautiful
Webforms

Nesting multiple "Include Subview" widgets causes invalid form
markup

#0000335
Content
Script

Unable to send email to multiple recipients

#0000336
Content
Script

The "asCSNode(..)" API does not behave in the same way as the
docman API when retrieving nodes by path.

#0000337
Content
Script

Unable to assign "long" values to category integer attributes

#0000341
Beautiful
Webforms

SignaturePad component fails to initialize signature from pre-
populated field value

#0000343
Content
Script

Download link promoted function for regular documents
disappears after installing Content Script

#0000354
Extension -
Forms

Several improvements to FormBuilder and BWF Widgets

#0000355
Beautiful
Webforms

Form service fails on "updateWorkflowForms(..)" if the form
contains a set attribute

#0000356
Content
Script

Not able to perform update or instert through runSql method if
report ext is not installed (Content Server 10.0)

#0000357
Extension -
PDF

Temp resources are not cleaned when extracting pages from a PDF
(both as PDFs and JPGs)

#0000361
Content
Script

Cron expression is not persisted when scheduling a script in
advanced mode

#0000362 Module Suite Unable to change owner of document inside Project

#0000363 Module Suite Form set fields are not always updated within workflows

#0000364
Script
Console

Script Console "loadConfig" command fails if there are disabled
services in the Content Server Base configuration that is being
exported.

#0000365
Script
Console

Placeholder expressions in exported Base Configuration are not
valid for Script Console

#0000366 Module Suite REST API Content Script always returns 200 OK Code

#0000368 Module Suite
Node features are empty if CSNode has been loaded with "fast"
API variant

75 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

ID Scope Description

#0000369 Module Suite
It's no longer possible to send an email to multiple recipients
specified in to or cc

#0000370
Script
Console

Wrong error page format when running on external application
server

#0000371
Extension -
Forms

Wrong download attachment links in sample Remote WebForms
form list page

#0000373
Extension -
Forms

Potential security issue with content of form hidden fields

#0000376
Extension -
Forms

Form attachments are present in the "views" list in the
form.amRemotePack

Important Notes when updating Module Suite to
version 2.0.0¶

Module Suite version 2.0.0 introduces a few paradigm shifts, mostly oriented to set the basis for
a better support of the new Smart UI available with Content Server 16.

Noteworthy changes mainly involve Beautiful WebForms, and specifically the ways in which the
libraries of widgets and templates are organized.

Module Suite version 2.0.0 introduces the concept of “library versions” for form widgets and
form templates. When creating or editing a Beautiful WebForms view, editors must select which
version of the widget library to use. The form templates should be chosen consequently (e.g.
always use templates V2 with form views built using widget library V2).

Module Suite version 2.0.0 ships with two library versions:

V1: this library matches the former Module Suite 1.7.0 widget library. It has been included
for backward-compatibility, and can be safely discarded for new installations.

V2: upgraded version specific to Module Suite 2.0.0. Objects within this library feature:

a clearer separation between widget presentation and dynamic behavior. Inline
scripting has been removed from all widgets.

support for new editor features (label positioning, etc.)

support for dynamic dependency evaluation (third party or custom .js and .css
inclusions)

•

•

◦

◦

◦

76 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

Installing the new libraries¶

This procedure is only useful if there are preexisting Beautiful Webforms views on the target
system. It can be safely ignored for vanilla installations.

After performing the standard module setup, the suggested procedure to upgrade the existing
libraries related to Beautiful WebForms (CSFormSnippets and CSFormTemplates, located within
the Content Script Volume) is described hereafter.

Upgrade procedure for CSFormSnippets¶

The CSFormSnippets library can be upgraded using the standard library upgrade procedure.

From the Module Suite Base Configuration, in the “Manage component library” section,
choose the “Upgrade” option.

In the library selection window, select the csformsnippets.lib option and click “upgrade”.

Upon completion, in the root of the Content Script Volume there will be 2 distinct folders
related to CSFormSnippets, as shown below. At this point the new library is available for
Beautiful WebForms.

Cleanup. The folder named “_CSFormSnippets_BCK_yyyyMMdd_HHmm” is a backup folder
containing the previously installed library. It can be safely exported and/or removed. In
case any of the standard widgets was customized, patched or otherwise modified, or new
custom widgets were added within the standard library, make sure that you transfer any
relevant changes to the new libraries before deleting the old version.

Upgrade procedure for CSFormTEMPLATEs¶

Upgrade procedure for CSFormTemplates is slightly different, due to the fact that templates are
referenced by object dataID within existing forms. In order to preserve functionality of existing
forms, it is recommended to perform the upgrade as follows.

From the Module Suite Base Configuration, in the “Manage component library” section,
choose the “Upgrade” option.

In the library selection window, select the csformtemplates.lib option and click “upgrade”.

Upon completion, in the root of the Content Script Volume there will be 2 distinct folders
related to CSFormTemplates:

CSFormTemplates : the new template library

_CSFormTemplates_BCK_yyyyMMdd_HHmm : a backup folder containing the
previously installed template library.

1.

2.

3.

4.

1.

2.

3.

1.

2.

77 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

The root of the “CSFormTemplates” folder will contain the following:

a set of templates, which correspond to library V1 (Module Suite 1.7.0). These should
correspond 1 to 1 with the templates contained in your backup folder:
_CSFormTemplates_BCK_yyyyMMdd_HHmm

a folder named V2, which contains new version 2 templates.

In the CSFormTemplates folder, delete all the templates (DO NOT DELETE the V2 folder) as
shown in the next image.

Navigate to the _CSFormTemplates_BCK_yyyyMMdd_HHmm folder and MOVE all the old
templates to the new CSFormTemplates folder (in this way, the dataIDs of the old
templates will be preserved). The now empty _CSFormTemplates_BCK_yyyyMMdd_HHmm
can be safely deleted.

Custom Form Templates and form widgets¶

Beautiful WebForms allows users to create custom libraries of form widgets, as well as new
form templates. It is recommended to organize such custom elements within the Content Script
Volume in dedicated, separate containers, in order to avoid issues when upgrading the standard
libraries.

Since version 1.7.0, the recommended structure was:

Content Script Volume

CSFormSnippets

<Customer name or custom component family name>

<custom widget A>

<custom widget B>

<Customer name>

CSFormTemplates

<custom template A>

<custom template B>

4.
1.

2.

5.

6.

•

◦

▪

▪

▪

◦

▪

▪

▪

78 Version 2.0.0 - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

With version 2.0.0, the recommended structure is extended to include the concept of library
version.

Content Script Volume

CSFormSnippets

V2

<Customer name or custom component family name>

<custom component A>

<custom component B>

<Customer name>

CSFormTemplates

V2

<custom template A>

<custom template B>

Previous releases - Release notes¶

The present document contains information regarding product enhancements, fixed issues and
known issues related to AnswerModules Module Suite version previous of 2.2.0.

•

◦

▪

▪

▪

▪

◦

▪

▪

▪

▪

Custom widgets

Custom Beautiful WebForms widgets created prior to version 2.0.0 must be updated to be compatible with Beautiful
WebForms Editor version 2.0.0. The procedure is straightforward and does not strictly require to perform any
changes to the widgets’ code. In order to update the existing widgets, perform the following steps for each one of
them:

open the component editor

save the component

Saving the component will trigger recompiling, which is enough to ensure compatibility in the new Module Suite
version.

1.

2.

END OF LIFE

All versions of Module Suite prior to Module Suite 2.0 have reached the end of their life, they are no longer
developed or supported.

79 Previous releases - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

PDF Version

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.
However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

80 Previous releases - Release notes¶

Copyright © 2013-2020 AnswerModules Sagl

../../images/media/ReleaseNotes_ModuleSuite_2.3.0.pdf

Architecture

Module Suite

Module Suite for Content Server by AnswerModules is a comprehensive framework that includes
various innovative solutions and extensions modules for OpenText Content Server.

Beautiful WebForms¶

The Beautiful WebForms Framework is an enhancement to the standard OpenText
WebForms module that provides developers with all the required tools to create and
manage next generation form based applications on Content Server. The module

significantly contributes in delivering to the application’s end users a modern, comfortable and
ergonomic usage experience while at the same time lowering overall development and
maintenance costs.

Content Script¶

Content Script is the first genuine scripting engine for OpenText Content Server. Content
Script enables the creation of a new type of executable script object, capable of both
automating actions that can be performed through the standard Content Server UI, as

well as creating custom interfaces, consoles, reports, and more.

81 Architecture

Copyright © 2013-2020 AnswerModules Sagl

Smart Pages¶

Smart Pages is a solution that allows developers to leverage the Content Script
template engine's capabilities to create UI elements of any sort by adopting a rigorous
MVC (https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller) design

pattern. Smart Pages have been primarily engineered to be utilized in the context of Smart View
applications, where they can be useful for creating Smart View perspective tiles. Smart Pages
replaces the Module Suite View extension for Smart View which has been discontinued at
version 1.8.

Script Console¶

Unlike the Content Script Module and Beautiful WebForms Module, which are standard
extension modules and live inside OpenText Content Server, the Content Script Console
is a standalone, multi-platform (Unix, Windows) environment for the execution of

Content Scripts and Beautiful WebForms. As such, it is executed separately from Content Server,
potentially on different physical environments (such as an Administrator’s own workstation or a
server in a network DMZ), but retains the capability of interacting with one or more Content
Server environments.

Module Suite default extensions¶

Module Suite comes out-of-the box with a set of extensions that enable new usage scenarios
for core Content Server modules.

Content Script Extension For Workflows¶

The Content Script Extension for Workflows allows you to add Content Script Steps to new or
existing Content Server Workflow Maps.

Content Script Steps are automatic steps that will execute the associated Content Script when
triggered. The execution outcome will be interpreted by the step itself in order to route the
Workflow to the next step. It is possible to build expressions that check for successful
execution, execution errors or that interpret the outcome of the script.

Note

Content Script API and API Extension Packages (CSEPs)

One of the most powerful features of Content Script lies in the fact that within the Content Script code it is possible
to interact with Content Server itself and with external services or data sources through a set of service APIs. The
API layer is engineered for extensibility, and new APIs are released periodically to enable the most various tasks.
Also, thanks to the Content Script SDK, Modules Suite owners and developers can create their own extensions. CSEP

can be enabled and disabled dynamically from within the administrative pages of Content Server.

82 Module Suite

Copyright © 2013-2020 AnswerModules Sagl

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

The usage of Content Script Steps can reduce to a minimum the need for custom Event Trigger
Scripts.

Content Script Extension For WebReports¶

The Content Script Extension for WebReports improves standard WebReports functionality by
introducing new usage scenarios, such as:

the possibility to use a Content Script as a Data Source for WebReports

the possibility to execute WebReports from within a Content Script

the possibility to execute Content Scripts from within a WebReport thanks to a custom
subtag

Module Suite Extension For ClassicUI¶

The Module Suite Extension for CalssicUI is a simple and fast way to enhance the OpenText
Content Server user experience.

This powerful tool gives the possibility to manage: - An objects menu options - Manage default
and custom columns at run-time - Redesign guis by embedding fancy widgets - Customize the
way items are being created in the system - Dynamically create forms without having to write
HTML code - Easily perform massive operations

Module Suite Extensions

ModuleSuite Extensions enhance the capabilities of existing standard Content Server Modules,
if they are installed on the systems.

ModuleSuite Extension For DocuSign¶

ModuleSuite Extension For DocuSign has been developed in order to dramatically simplify the
integration between OpenText Content Server and the DocuSign® signing platform. These
integration solutions are based on AnswerModules' core solution, Module Suite, and thanks to
their outstanding flexibility can be utilized to implement all sorts of use-case scenarios.

Most common usage scenarios

Manually starting a DocuSign® signing workflow directly within the Content Server UI in
order to have a set of Content Server documents signed by a group of Content Server
users
Manually starting a DocuSign® signing workflow directly within the Content Server UI in
order to have a set of Content Server documents signed by a group of external users;

•

•

•

•

•

83 Module Suite Extensions

Copyright © 2013-2020 AnswerModules Sagl

../../datasheets/WebReports_Extension.pdf
../../datasheets/AnswerModules_DocuSign.pdf

Managing one or more DocuSign® signing workflows, each one involving both Content
Server users and non-Content Server users, as part of the execution of a Content Server
internal workflow

ModuleSuite Extension For ESign¶

ModuleSuite Extension For ESign allows for Beautiful WebForms to be used as the signing step
in a signature workflow.

Applicative Layers

One of the main reasons that brought to the creation of the Module Suite was the need to
improve Content Server’s capability of integration with other systems. For this very reason, on
top of an OScript Layer that implements most of the Content Script Core functionalities, we
developed an integration layer that makes use of the Content Server embedded Java Virtual
Machine.

Content Script was developed with a language grammar and syntax fully compatible with
Groovy, the well-known Scripting language for Java, in order to speed up development and most
importantly open Content Server to a wider range of developers than the reduced OScript
developers’ community.

On the other hand, being OScript's grammar very similar to Groovy's, OScript developers should
easily find their way with the Content Script language.

•

Note

In recent years, more and more functionalities of Content Server have been making use of the embedded Java
Virtual Machine. Nevertheless, the standard level of isolation of these components has not yet been significantly
improved. It is still up to system administrators and developers to manually assure the absence of conflicts in the
system when new Java libraries become necessary. Module Suite comes with a higher level of isolation and
implements its own additional libraries management

84 Applicative Layers

Copyright © 2013-2020 AnswerModules Sagl

Requirements, links and dependencies

Supported Content Server versions¶

The Modules Suite currently supports the following Content Server versions:

10.0.x (up to version 2.1)

10.5.x

16.0.x

16.2.x

Dependencies¶
Module or Component Included In Depends On

Content Script - -

Beautiful WebForms - Content Script

Script Console - Content Script

Remote Beautiful
WebForms

Script Console Beautiful WebForms

Module Suite Extension
For WebReports

Content Script WebReports

Module Suite Extension
for Workflows

Content Script

Module Suite Extension
for Classic UI

AMGUI Ext.Pack Content Script

Module Suite Extension
for SmartUI

AnswerModules Module Suite for
SmartUI

Content Script

Module Suite Extension
for ESign

AnswerModules Content Script
eSign ExtPack

Content Script, Beautiful
Webforms, ESign

Module Suite Extension
for DocuSign

AnswerModules Module Suite
extension for DocuSign

Content Script, Beautiful
Webforms, Script Console

Modules layouts

Module Suite's modules present a peculiar layout that differentiate them from most of the
Content Server's modules you might have worked with. Knowing the modules' internal structure

•

•

•

•

85 Requirements, links and dependencies

Copyright © 2013-2020 AnswerModules Sagl

is of primary importance when it comes to: upgrading, maintaining or extending your Module
Suite instance.

Content Script¶

Content Script features a set of layout differences in respect to standard Content Server
modules. In the following paragraphs each one of these differences is discussed in details.

amlib¶

The “amlib” directory contains all the core libraries of the Content Script Java Layer. It is also
used to deploy and manage Content Script Extension packages. If a Content Script API Service
(CSAS) , made available from a CSEP, needs to load its own Java libraries, then they will be
deployed in a sub-directory of the amlib directory having the same name of the Content Script
API Service identifier. This way, two different Content Script API Services can load two different
version of the same Java library.

csscripts¶

Content Script scripts can be used and also invoked directly from OScript. Scripts under this
folder can be executed as part of OScript scripts or functions. Some of them are used to
implement Module Suite’s administrative pages.

library¶

Module Suite's components behaviour and functionalities can be modified and extended by
manipulating the content of the Content Script Volume (a Content Server’s Volume created
when installing the Content Script module).

The Content Script OScript APIs are not covered by this training manual.

86 Modules layouts

Copyright © 2013-2020 AnswerModules Sagl

The purpose of most of the structure and content of the Content Script Volume can be easily
understood by simply navigating the volume thanks to the "convention over configuration"
paradigm that has been adopted. That means that most of the time, simply creating the right
Content Script, Template Folder or Template in the right place will be enough to activate a
specific feature. The default configuration (i.e. the default Content Script Volume's structure)
should be imported as part of the installation procedure of the Content Script module.

In the next sections we will refer to specific locations in the Content Script Volume content as
"Component Library" or simply "Library". This directory contains the default initial version of the
Library and will be used later on to manage Library’s backups and upgrades. The Library can
always be imported, exported or upgraded directly from the Module Suite’s administrative
pages.

override¶

Content Script can be used to deeply customize the Content Server standard UI through a non-
disruptive (applying non-permanent modifications) functionality that allows developers to
override the standard result of a Content Server weblingo file evaluation with the result of a
Content Script execution.

Weblingo override functionality is controlled by XML configuration files to be placed in the "
override" folder in the anscontentscript module.

Within the folder, you should find a sample XML configuration file that should be quite self-
explanatory. The XML file points to a Content Script object, identified by dataID, which
implements the functionality.

Setting the "active" flag to "true" will activate the override.

<?xml version="1.0" encoding="UTF-8"?>
<override>
 <active>false</active>
 <target>
 <![CDATA[E:\OTHOME\module\webattribute_10_5_0\html\attrstring.html]]>
 </target>
 <!-- Content Script ID -->
 <script>ID</script>
 <!-- BEFORE, AFTER, CUSTOM -->
 <mode>CUSTOM</mode>
 <!-- Optional Script's Parameters -->
 <params>
 <entry>
 <key>key</key>
 <value>value</value>
 </entry>
 </params>
</override>

Please note that this is a very low-level functionality and such might have a significant impact on users' experience
use it with caution. The feature requires a restart every time the configuration is changed.

87 Modules layouts

Copyright © 2013-2020 AnswerModules Sagl

Beautiful WebForms¶

The most relevant aspects of the module's internal structure for the Beautiful WebForms
module are related with the "support" directory. Beautiful WebForms default View Templates
make use of several JavaScript libraries: they have been selected, written and optimized to work
together with View Templates.

In particular, the Beautiful WebForms’ unique validation framework makes use of the libraries
stored under the "js" directory. The recommended way to load these libraries is to make use of
the Velocity macros expressly designed to load them

Script console¶

The Script Console internal structure reflects its ability to connect to multiple Content Server
Instances and to organize Content Script scripts in multiple repositories.

Starting with version 2.0 the module's static resources have been deeply revised and re-organized. They are now

structured in a way that reflects the way Beautiful WebForms' widgets are organized in the Content Script volume.
Beautiful WebForms' widget are in fact now organized into libraries.

Since version 1.7.0, the Script Console runtime and configuration folders are all stored under the same installation
path. The Script Console installation folder will appear as shown in figure here below:

88 Modules layouts

Copyright © 2013-2020 AnswerModules Sagl

Script Console main configuration file¶

The Script Console main configuration file (cs-console-systemConfiguration.xml) is stored
under the config directory. As the naming of the file tells us, it is an XML based configuration
file, intended to include general configuration parameters of the Script Console as well as
specific settings related to the Content Server system to which the Script Console can be
connected.

The configuration file is automatically modified by specific actions performed on/through the
Console (such as registering a new target Content Server system) or can be edited manually by
the administrators.

89 Modules layouts

Copyright © 2013-2020 AnswerModules Sagl

Installation and Upgrade

Prerequisites

Prerequisites¶

The following section describes the step-by-step procedure that will lead to the installation of
the Module Suite on a single-machine Windows based Content Server environment.

The following guide assumes that the following are available:

The required Module Suite installers for Windows

A valid AnswerModules license key

•

Before proceeding with the installation, make sure that the installer version matches the OpenText Content Server
target system version.

E.g.:

module-suite-2.7.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;
module-suite-2.6.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.5.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;
module-suite-2.4.0-OTCS16.exe is the Windows installer for OpenText Content Server 16.0.X;
module-amcontentscript-2.3.0-OTCS105.exe is the Windows installer for OpenText Content Server 10.5.X;
module-amcontentscript-2.2.0-OTCS10.exe is the Windows installer for OpenText Content Server 10.0.X;

•
•

•
•
•
•

Tip

Hotfixes and patches are continuously published on the AnswerModules Support Portal. Check the availability of
applicable patches when starting a new installation.

E.g. https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
(https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16)

•

An activation key is only required starting from version 1.7.0 of the Module Suite.

Important

Starting from version 2.0.0 activation keys are bound to system’s fingerprint.

90 Installation and Upgrade

Copyright © 2013-2020 AnswerModules Sagl

https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16

Installing the Suite

Installation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Stop the Content Server

Run the Module Suite Master Installer and unpack: Content Script, Beautiful WebForms,
Smart Pages modules and all the desired Module Suite Extension packages.

 Deploy Content Server Modules

•

•

Step-by-step procedure

The following screens will guide you through the deployment of Module Suite modules.

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory for proceeding with the
installation
A copy of the agreement will be available, upon installation, in:

%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA
Select “Next” when ready.



1.

2.

91 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Components selection: Script console is unselected by default because it is not a Content Server module. A

standard Module Suite installation does not require this component to be installed.
Select “Next” when ready.

3.

92 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

OTHOME selection: The installer will prompt you for the location where Content Server is installed. Browse
to your OTCS_HOME and select “Next” when ready to start the installation.

Automatic import of Content Server dependencies: The installer will automatically attempt to load a few
libraries from Content Server.
In case of failure, a warning message could appear during this phase of the installation. In such case, the
operation must be performed manually

4.

5.

93 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Module Suite Extension Packages: Select “Next” when ready.

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory to proceed with the installation
A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA Accepting the End User Agreement is

mandatory to proceed with the installation.
Select “Next” when ready.

6.

7.

8.

94 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Components selection:Unselect the OTCS Module component. Select all of the extension components that
are to be installed

Select “Install” when ready.

9.

CSEP SAP* - DO NOT INSTALL THEM UNLESS YOU WANT TO CONFIGURE THEM

This extension package requires the SAP™ JCo library (https://support.sap.com/en/product/connectors/

JCo.html) to be available in the extension repository <OTHOME>/module/anscontentscript_x_y_z/amlib/
sap and is certified for use with SAP™ JCo version (3.0.6) when used on OpenText Extended ECM and
version (3.0.10) when used on CSP. SAP™ JCo library (https://support.sap.com/en/product/connectors/
JCo.html) can be downloaded from SAP™ website. More on this extensions (/installation/extpacks/
#content-script-extension-for-sap).

95 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap

10. Installation: The extension packages are automatically installed.
Select “Next” when the procedure is complete.

96 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

11. Installation completed: Select “Finish” and return to the installation checklist to finalize the module
setup.

97 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Start Content Server

Login as Administrator and access the Module administration panel

Access the Content Server Admin pages > Core System - Module Configuration > Install
Modules

From the available modules, select “AnswerModules Content Script 2.7.0”

Follow the installation steps and restart Content Server when prompted.

From the Administration Home, access the Module administration panel

Select “Install Modules”

From the available modules, select “Answer Modules - Beautiful Web Forms 2.7.0”

What to do if the installer raises the error: Unable to automatically extract...

Some Content Script extension packages require two Java libraries that are specific to the target Content Server
environment and are not distributed with the module.
The required library files are:

csapi.jar

service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 16.X)
%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 10.5.X)

To retrieve the files:

copy the file named XXX.war to a temporary folder
rename the file XXX.war in XXX.
extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder:

%OTCS_HOME\staging\anscontentscript_x_y_z\amlib



•

•

•
•

•
•
•

Staging

At this point, the Modules have been deployed in the Content Server Staging folder and is available for installing it
through the Content Server administration pages.

 Install Content Server Modules

•

•

•

•

•

•

•

•

98 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Follow the installation steps and restart Content Server when prompted.

From the Administration Home, access the Module administration panel

Select “Install Modules”

From the available modules, select “Answer Modules - Smart Pages 2.7.0”

Follow the installation steps and restart Content Server when prompted.

•
•

•

•

•

 From the Administration Home, select AnswerModules Administration > Base
Configuration, then enter the activation License in order to activate the product. License
shall be entered in the Module Suite - Activation Key property



How do I get an activation key?

In order to activate Module Suite you need a valid activation key. Activation keys can be requested to
AnswerModules Support (https://support.answermodules.com) by providing the OpenText Content Server System
Fingerprint. You can read your's environment fingerprint from the OpenText Admin Pages as shown below

99 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com

Since version 1.7.0, if the installation is performed on a multi-server architecture, the License Key must be made
available on every single machine. License Key information is stored in the Content Script module
anscontentscript.ini file.

In order to do so, there are two alternative options:

Edit the .ini file manually on each machine, adding the licensing information.
From the Administrative pages of each machine, perform the “save Base Configuration” operation.

•
•

 Save the Base Configuration and restart Content Server 

100 Installing the Suite

Copyright © 2013-2020 AnswerModules Sagl

Installing the Suite on Unix

Installation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Stop the Content Server

Run the Module Suite Master Installer and unpack: Content Script module, Beautiful
WebForms, Smart Pages modules and all the desired Module Suite Extension packages

 Import the Module Suite components and widgets library

Installation complete

The Module Suite's initial setup is complete

Unix Consultant

This manual presumes that the user executing the intallation process has a good knowledge of a Unix System and

its commands

 Deploy Content Server Modules

•

•

Step-by-step procedure

The following screens will guide you through the deployment of Module Suite modules.

Staging folder: extract ModuleSuite compressed archive file into a temporary location

EULA : Acceptance of the end-user license agreement is mandatory for proceeding with the installation
A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA Accepting the End User Agreement is
mandatory to proceed with the installation.

Enter “Y” when ready.



1.

2.

101 Installing the Suite on Unix

Copyright © 2013-2020 AnswerModules Sagl

../library/

OTHOME selection: The installer will prompt you for the location where Content Server is installed. Either

confirm (ENTER) the default location or enter the correct location to proceed with the installation.

Automatic import of Content Server dependencies: The installer will automatically attempt to load a few

libraries from Content Server.
In case of failure, a warning message could appear during this phase of the installation. In such case, the
operation must be performed manually

Module Suite Extension Packages: Enter “Y” to install the extension when prompted.

3.

4.

5.

CSEP SAP* - DO NOT INSTALL THEM UNLESS YOU WANT TO CONFIGURE THEM

This extension package requires the SAP™ JCo library (https://support.sap.com/en/product/connectors/
JCo.html) to be available in the extension repository <OTHOME>/module/anscontentscript_x_y_z/amlib/
sap and is certified for use with SAP™ JCo version (3.0.6) when used on OpenText Extended ECM and
version (3.0.10) when used on CSP. SAP™ JCo library (https://support.sap.com/en/product/connectors/

JCo.html) can be downloaded from SAP™ website. More on this extensions (/installation/extpacks/
#content-script-extension-for-sap).

102 Installing the Suite on Unix

Copyright © 2013-2020 AnswerModules Sagl

https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap

Start Content Server

Login as Administrator and access the Module administration panel

Select “Install Modules”

From the available modules, select “AnswerModules Content Script 2.7.0”

Follow the installation steps and restart Content Server when prompted.

From the Administration Home, access the Module administration panel

Installation completed: return to the installation checklist to finalize the module setup.
6.

What to do if the installer raises the error: Unable to automatically extract...

Some Content Script extension packages require two Java libraries that are specific to the target Content Server
environment and are not distributed with the module.

The required library files are:

csapi.jar
service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cws.war

classificationsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-classifications.war

physicalobjectsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-physicalobjects.war

recordsmanagementservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-recordsmanagement.war

To retrieve the files:

copy the file named XXX.war to a temporary folder
rename the file XXX.war in XXX.
extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder:

%OTCS_HOME\staging\anscontentscript_x_y_z\amlib



•
•

•

•

•

•
•
•

 Install Content Server Modules

•

•

•

•

•

•

103 Installing the Suite on Unix

Copyright © 2013-2020 AnswerModules Sagl

Select “Install Modules”

From the available modules, select “Answer Modules - Beautiful Web Forms 2.7.0”

Follow the installation steps and restart Content Server when prompted.

From the Administration Home, access the Module administration panel

Select “Install Modules”

From the available modules, select “Answer Modules - Smart Pages 2.7.0”

Follow the installation steps and restart Content Server when prompted.

•
•

•

•

•

•

•

 From the Administration Home, select AnswerModules Administration > Base
Configuration, then enter the activation License in order to activate the product. License
shall be entered in the Module Suite - Activation Key property



How do I get an activation key?

In order to activate Module Suite you need a valid activation key. Activation keys can be requested to
AnswerModules Support (https://support.answermodules.com) by providing the OpenText Content Server System
Fingerprint. You can read your's environment fingerprint from the OpenText Admin Pages as shown below

104 Installing the Suite on Unix

Copyright © 2013-2020 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com

Since version 1.7.0, if the installation is performed on a multi-server architecture, the License Key must be made
available on every single machine. License Key information is stored in the Content Script module
anscontentscript.ini file.

In order to do so, there are two alternative options:

Edit the .ini file manually on each machine, adding the licensing information.
From the Administrative pages of each machine, perform the “save Base Configuration” operation.

•
•

 Save the Base Configuration and restart Content Server 

105 Installing the Suite on Unix

Copyright © 2013-2020 AnswerModules Sagl

Installing Content Script

Installation procedure (Windows)¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Stop the Content Server

Run the Module Suite Master Installer and install the Content Script module and the
desired Module Suite Extension packages

 Import the Module Suite components and widgets library

Installation complete

The Module Suite's initial setup is complete

 Deploy Content Server Modules

•

•

Step-by-step procedure

The following screens will guide you through the deployment of Module Suite modules.

Welcome Screen: Select “Next” when ready to start the installation.



1.

106 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

../library/

EULA Screen: Acceptance of the end-user license agreement is mandatory for proceeding with the
installation

A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA
Select “Next” when ready.

Components selection: Script console is unselected by default because it is not a Content Server module. A

standard Module Suite installation does not require this component to be installed.
Select “Next” when ready.

2.

3.

107 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

OTHOME selection: The installer will prompt you for the location where Content Server is installed. Browse

to your OTCS_HOME and select “Next” when ready to start the installation.

Automatic import of Content Server dependencies: The installer will automatically attempt to load a few
libraries from Content Server.
In case of failure, a warning message could appear during this phase of the installation. In such case, the

4.

5.

108 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

operation must be performed manually

Module Suite Extension Packages: Select “Next” when ready.6.

109 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory to proceed with the installation
A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA Accepting the End User Agreement is
mandatory to proceed with the installation.
Select “Next” when ready.

Components selection:Unselect the OTCS Module component. Select all of the extension components that
are to be installed

7.

8.

9.

110 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

Select “Install” when ready.

Installation: The extension packages are automatically installed.
Select “Next” when the procedure is complete.

10.

111 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

112 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

Start Content Server

Login as Administrator and access the Module administration panel

Select “Install Modules”

From the available modules, select “AnswerModules Content Script X.Y.Z”

Follow the installation steps and stop Content Server when prompted.

Installation completed: Select “Finish” and return to the installation checklist to finalize the module setup.11.

 Install Content Server Modules

•

•

•

•

•

If an earlier version of Content Script module was installed, and you are performing an upgrade, it is mandatory
once the upgrade is completed to check for the presence of the previous module version in %OTCS_HOME%/
module. In the eventuality, the previous version of the module has not been removed automatically, stop Content

Server service and remove it manually. The Content Server will fail to start if two versions of the Content Script
module are present at the same time.

What to do if the installer raises the error: Unable to automatically extract...

Some Content Script extension packages require two Java libraries that are specific to the target Content Server

environment and are not distributed with the module.
The required library files are:

csapi.jar
service-api-X.X.XX.jar



•
•

113 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

Post installation checks:

Verify that the following optimization for the Java Server JVM has been added in
opentext.ini

and can be found in the web app located in:

%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 16.X)
%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 10.5.X)

To retrieve the files:

copy the file named XXX.war to a temporary folder

rename the file XXX.war in XXX.
extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder:

%OTCS_HOME\staging\anscontentscript_x_y_z\amlib

•
•

•

•
•

•

JavaVMOption_4=-Xmx2048m
JavaVMOption_5=-Xms128m
JavaVMOption_6=-XX:+CMSClassUnloadingEnabled
JavaVMOption_7=-XX:+UseConcMarkSweepGC
JavaVMOption_8=-Dfile.encoding=UTF-8
JavaVMOption_9=-Dlog4j.ignoreTCL=true

 From the Administration Home, select AnswerModules Administration > Base
Configuration, then enter the activation License in order to activate the product. License
shall be entered in the Module Suite - Activation Key property



How do I get an activation key?

In order to activate Module Suite you need a valid activation key. Activation keys can be requested to
AnswerModules Support (https://support.answermodules.com) by providing the OpenText Content Server System
Fingerprint. You can read your's environment fingerprint from the OpenText Admin Pages as shown below

114 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com

Since version 1.7.0, if the installation is performed on a multi-server architecture, the License Key must be made
available on every single machine. License Key information is stored in the Content Script module
anscontentscript.ini file.

In order to do so, there are two alternative options:

Edit the .ini file manually on each machine, adding the licensing information.
From the Administrative pages of each machine, perform the “save Base Configuration” operation.

•
•

 Save the Base Configuration and restart Content Server 

115 Installing Content Script

Copyright © 2013-2020 AnswerModules Sagl

Installing Beautiful WebForms

Installation procedure (Windows)¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Stop the Content Server

Run the Module Suite Master Installer and install the Beautiful WebForms module.

 Import the Module Suite components and widgets library

Installation complete

The Content Script initial setup is complete

 Deploy Content Server Modules

•

•

Step-by-step procedure

The following screens will guide you through the deployment of Module Suite modules.

Welcome Screen: Select “Next” when ready to start the installation.



1.

116 Installing Beautiful WebForms

Copyright © 2013-2020 AnswerModules Sagl

../library/

EULA Screen: Acceptance of the end-user license agreement is mandatory for proceeding with the
installation

A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA
Select “Next” when ready.

Components selection: Script console is unselected by default because it is not a Content Server module. A

standard Module Suite installation does not require this component to be installed.
Select “Next” when ready.

2.

3.

117 Installing Beautiful WebForms

Copyright © 2013-2020 AnswerModules Sagl

OTHOME selection: The installer will prompt you for the location where Content Server is installed. Browse

to your OTCS_HOME and select “Next” when ready to start the installation.

4.

118 Installing Beautiful WebForms

Copyright © 2013-2020 AnswerModules Sagl

Start the Content Server

Login as Administrator and access the Module administration panel

Select “Install Modules”

From the available modules, select “Answer Modules - Beautiful Web Forms X.Y.Z”

Follow the installation steps and stop Content Server when prompted.

Installation completed: Select “Finish” and return to the installation checklist to finalize the module setup.5.

 Install Content Server Modules

•

•

•

•

•

Installation complete

The Beautiful WebForms initial setup is complete

119 Installing Beautiful WebForms

Copyright © 2013-2020 AnswerModules Sagl

Installing Smart Pages (f.k.a. Module Suite
Extension for SmartUI)

Prerequisites¶

This guides assumes the following components to be already installed and configured:

AnswerModules' ModuleSuite

We will refer to the Content Server installation directory as OTCS_HOME

Installation procedure¶

The AnswerModules Smart Pages includes the following parts:

AnswerModules Smart Pages Content Server module
SmartUI Extension library objects to be imported in the Content Script Volume

Installing the Module Suite extension for SmartUI¶

Run the Module Suite SmartUI installer:

Follow the installation wizard steps:

•

•
•

1
module-anscontentsmartui-X.Y.Z-OTCS16.exe

 Select "Next" when ready to start the installation. 

 The installer will prompt you for the location where Content Server is installed. Browse
to your OTCS_HOME and select "Next".



 Review the installation steps for each component to be installed.

 Click "Finish" to complete the unpacking of the module

Staging

At this point, the Module has been deployed in the Content Server Staging folder and is available for installing it
through the Content Server administration pages.

 Access the Content Server Admin pages > Core System - Module Configuration > Install
Modules



120 Installing Smart Pages (f.k.a. Module Suite Extension for SmartUI)

Copyright © 2013-2020 AnswerModules Sagl

Deploying Beautiful WebForms static resources¶

The Smart Pages include a set of static resources (javascript libraries, css, etc.) required to
enable embedding of Beautiful WebForms within SmartUI perspectives. In order to deploy these
resources, perform the following steps:

Importing the SmartUI Extension library objects¶

In order to import the SmartUI Extension library, perform the following steps.

 Locate the AnswerModules Smart Pages module and proceed with installation

 Restart the OTCS services when prompted in order for the installation to be completed.

 On the server's filesystem, navigate to the anscontentsmartui module support folder,
and locate the folder named ansbwebform



OTCS_HOME\support\anscontentsmartui\ansbwebform

 Copy the contents of the ansbwebform folder identified above to the Beautiful
WebForms module support folder:



OTCS_HOME\support\ansbwebform

Merging

The two paths contain a similar folder structure, which will be merged to add SmartUI specific files to the Beautiful
WebForms support folder

Only once

This procedure imports objects within the Content Script Volume. In case of clustered environment, it is only

necessary to perform this operation once, as the volume is shared between all instances.

 On the server filesystem, navigate to the location of the AnswerModules Smart Pages
module and open the library folder

OTCS_HOME\module\anscontentsmartui_X_Y_Z\library



121 Installing Smart Pages (f.k.a. Module Suite Extension for SmartUI)

Copyright © 2013-2020 AnswerModules Sagl

Installing Script Console

Installation procedure¶

Script Console can be configured to run in different modes. Common scenarios are:

standalone interactive console, connected to OTCS: mainly used for batch processing and
administration tasks
standalone script interpreter, connected to OTCS: mainly used for scheduling
administration tasks
standalone lightweight webserver (based on embedded application server), connected or
not connected to OTCS
web application deployed on external application server, connected or not connected to
OTCS

 Copy the smartui extension.lib file to the same location within the Content Script
module

OTCS_HOME\module\anscontentscript_X_Y_Z\library



 In a browser, open the Content Server Admin pages > AnswerModules Administration >
Base Configuration



Check the URL

If you are in a clustered environment, make sure you are accessing the right server (the one on which you
performed the steps above).

 Open the Import tool to import the content of the SmartUI Extension library. For details
on how to use the Import tool, check the dedicated guide.



 Copy the Smart View's Beautiful WebForms widgets from the SmartUI Extension library
into their standard location in the Content Script Volume



Content Script Volume:SmartUI Extension:CSFormSnippets:V2:* -> Content Script Volume:CSFormSnippets:V2
Content Script Volume:SmartUI Extension:CSFormSnippets:V3:* -> Content Script Volume:CSFormSnippets:V3

 Copy the Smart View's Content Script snippets from the SmartUI Extension library into
their standard location in the Content Script Volume



Content Script Volume:SmartUI Extension:CSScriptSnippets:* -> Content Script Volume:CSScriptSnippets

1.

2.

3.

4.

122 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

../library/

This guide covers the standard installation procedure of the Content Script Console (standalone
based on embedded application server) which is compliant with the options 1, 2 and 3 of the
above list.

For alternative deployment scenarios, including deployment on an external application server,
please make reference to AnswerModules Support Team and guides available through Support
Portal.

 Run the Script Console Installer (WINDOWS), or extract the Script Console archive, and
install the Script Console in your favourite location (this step should be executed by an
user having local administrative privileges)



Environment variables

The Script Console requires an environment variable to be defined in order to work properly, for your convenience
this variable is automatically defined on windows server by the Script Console installer:

AM_CONSOLE_DATA: the Script Console's root folder•

Step-by-Step procedure

The following screens will guide you through the deployment of Script Console runtime.

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory for proceeding with the
installation
A copy of the agreement will be available, upon installation, in:

%AM_CONSOLE_DATA%/license/EULA Select “Next” when ready.



1.

2.

123 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

AM_CONSOLE_DATA selection: Choose the location where the Script Console components will be installed.

E.g.
E:\AM\SC_2_7_0\

Script Console Application and Content Script Extension Packages: there are two different types of
extensions that can be installed:

Content Script Extensions are extensions for the embedded Content Script Engine.

3.

4.

5.

124 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

Script Console Applications

 11. Installation
completed: Select “Finish” and return to the installation checklist to finalize the module setup.

6.

 Copy Content Server's libraries to the Script Console runtime

125 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

Content Server libraries required

Some Content Script extension packages require additional Java libraries that are specific to the target Content
Server environment, and are not distributed with the module. The required library files are:

csapi.jar
service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cws.war

classificationsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-classifications.war

physicalobjectsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-physicalobjects.war

recordsmanagementservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-recordsmanagement.war

oml.jar

which can be found in: %OTCS_HOME%\\ojlib

To retrieve the files:

copy the file named XXX.war to a temporary folder
rename the file XXX.war in XXX.zip

extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder: %AM_CONSOLE_DATA%/runtime/amlib

•
•

•

•

•

•

•
•

•

Copy libraries form Content Script

All the libraries mentioned above but ** oml.jar ** are usually also found in the installation folder of the
Content Script module: %OTCS_HOME/module/anscontentscript_X_Y_Z/amlib

 Perform basic configuration of the Script Console. The main configuration file is located
in: %AM_CONSOLE_DATA%/config/cs-console-systemConfiguration.xml
Default configuration will be similar to the following:



<?xml version="1.0" encoding="UTF-8" ?>
 <config>
 <systems>
 <system id="TEST">
 <name>Content Server TEST Environment</name>
 <serverHost>localhost</serverHost>
 <serverPort>2099</serverPort>
 <local-repository-home>TEST</local-repository-home>

126 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

Configure Script Console¶

To perform configuration against an OTCS instance, run the Script Console in shell mode. To do
so, open a Windows Commands Processor and move to the folder: %AM_CONSOLE_DATA%/
runtime/bin which includes the Script Console's executables scripts

Run the app-windows.bat or app.sh script
The following prompt should appear:

The base configuration allows to specify one or more “system” objects which represent
OTCS instances to which the console will be able to connect.

 <local-repository-encoding>UTF-8</local-repository-encoding>
 <otcs-repository-encoding>UTF-8</otcs-repository-encoding>
 <systemVars>
 <systemVar name="img">/</systemVar>
 <systemVar name="url"></systemVar
 <systemVar name="csModulePath">
 </systemVars>
 <serviceVars>
 <serviceVar service="core" name="amcs.core.httpProxyHostname" ></serviceVar>
 <serviceVar service="core" name="amcs.core.httpProxyPort">80</serviceVar>
 <serviceVar service="core" name="amcs.core.httpProxyUsername"></serviceVar>
 <serviceVar service="core" name="amcs.core.httpProxyPassword"></serviceVar>
 <serviceVar service="core" name="amcs.core.httpMaxConnPerRoute">20</serviceVar>
 <serviceVar service="core" name="amcs.core.httpMaxConnTotal">50</serviceVar>
 <serviceVar service="core" name="amcs.core.httpOTCSSchema">http</serviceVar>
 <serviceVar service="core" name="amcs.core.tempFilePath">/tmp/</serviceVar>
 </serviceVars>
 <users></users>
 </system>
 </systems>
 </config>

How to setup your base configuration

The base configuration can be edited manually, or, alternatively, configuration parameters can be downloaded from
a target Content Server instance. This feature comes particularly handy for installations that include multiple
Content Script Extension Packages, each with its own configuration settings.

 Apply any available hotfix(es)

Hot to install a hotfix

Before you install any hotfix, please backup all essential files. To install the hotfix, download the hotfix from the

Support portal and save it to a temporary location. Make sure Script Console services (or executable) are completely
stopped. From the temporary location, extract the contents of the hotfix to the <Script_Console_home> directory
and then restart it.
The directory (directories) and file(s) contained in the hotfix(es) you install will be copied to <Script_Console_home>

Please always make reference to the hotfix's description file:/hotfixes/hotFix_ANS_XXX_YYY_ZZZ.hfx for specific
installation instructions or pre/post installation procedures

•
•

127 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

The default TEST system is selected. To list all available systems, use the system
command with the list flag (-l, --list). E.g. system -l:

Unix 

•

Unix 

128 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

To create a new system (for example, LOCAL) use the system command with the add flag
(-a, --add) followed by the ID of the new system. E.g. system -a LOCAL

The shell will prompt for the required base values, such as hostname and port number.

Switch the active system to LOCAL using the system command with the system flag (-s)
followed by the ID of the target system. E.g. system -s LOCAL

•

Unix



Upon creating a new system, the Script Console will require a restart and will automatically shutdown.

•

129 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

The active system indicator in the command prompt should now indicate LOCAL.

Login to the LOCAL system using the login command

Unix 

•

Unix 

130 Installing Script Console

Copyright © 2013-2020 AnswerModules Sagl

The active system indicator in the command prompt should now turn green to indicate that the
system is ONLINE

Synchronize ModuleSuite configuration parameters from the LOCAL system using the
loadConfig command with the mode flag (-m, --mode) followed by the ALL value, and the
verbose flag (-v, --verbose). E.g. loadConfig -m ALL -v The LOCAL system base configuration
will be transfered and stored in the Script Console configuration file

The configuration is complete. Try a simple ls command to test the connection

Installing Extension Packages

Installation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Run the Module Suite Content Script Master Installer and install the desired extension
packages.

•

•

Unix 

•

Step-by-step procedure 

131 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

The following screens will guide you through the Content Script Module Master Installer steps required to install
optional extension packages:

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory to proceed with the installation
A copy of the agreement will be available, upon installation, in:
%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA Accepting the End User Agreement is
mandatory to proceed with the installation.

Select “Next” when ready.

1.

2.

132 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

Components selection:Unselect the OTCS Module component. Select all of the extension components that

are to be installed
Select “Install” when ready.

3.

133 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

Installation: The extension packages are automatically installed.
Select “Next” when the procedure is complete.

4.

Configure the Extension Packages

If you are installing extension packages on an already installed and properly configured Module Suite instance you

have to update the module's Base Configuration following the procedure below:

Stop and Start Content Server service to let the system load the newly installed Extension Packages

Login as Administrator and access the Module administration panel

From the Administration Home, select AnswerModules Administration > Base Configuration

If necessary, change the core configuration or the configuration of the extension modules.

Save the Base Configuration (even in case no changes were applied) and restart Content Server

•

•

•

•

•

In order for any change in the base configuration to become effective, a restart of Content Server is required

134 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

Rendition Extension Package¶

What is it?¶

The rendition extension package allows you to programmatically invoke a third party rendition
engine to convert documents from one format to another, the most common use case is to
convert HTML documents to PDF documents. Using the rendition extension package, you will be
able to convert documents in real time and without interrupting the script execution flow.

The installation procedure for the rendition extension package isn't different from any other
extension package, although it requires a couple of additional steps to be completed.

Install the third party rendition engine¶

The CS Rendition Extension package only provides the API to interface with a third party engine
capable of converting documents.

This software is distributed separately by the third party and has to installed separately.

Although potentially compatible with different engines, the rendition extension package is pre-
configured and tested to use on of the following options:

an open source engine named wkhtmltopdf

an open engine AnswerModules R&D Team derived from the open source project
Puppeteer (https://github.com/puppeteer/puppeteer) named rend

The installation and configuration of the two above mentioned solutions is pretty similar.

wkhtmltopdf¶

Installation¶

•

•

 Follow the software developers instructions to perform the installation on each server in
the OTCS cluster on which the extension is needed.



 Upon a successful installation, the main executable has to be made available to the
Content Script Extension Package as a dropin.

To do so:

locate the wkhtmltopdf installation path
locate the wkhtmltopdf.exe executable in the folder
copy the wkhtmltopdf.exe in the CS Rendition Extension package dropin folder,
located in:



◦

◦

◦

135 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

wkhtmltopdf.org
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer

Configuration¶

 <OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

 Configure the Rendition extension package in order to use the wkhtmltopdf executable
in the Module Suite Base Configuration (/administration/modulesuite/#base-
configuration)

Section rend

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin wkhtmltopdf

amcs.rend.html2pdf.cmdline
-B 10 -T 10 -L 5 -R 5 --viewport-size 1920x1080 ${source}
--print-media-type --cookie ${cookie} --run-script
"am_printFix()" ${destination}

amcs.rend.html2pdf.timeout 60000

Configuration Property Configuration Proerty Meaning

amcs.rend.html2pdf.dropin
The relative path to the engine's executable. For security
reasons, the root of this path is the extension package's
dropin folder.

amcs.rend.html2pdf.cmdline

The template of the command line instruction to be
used when performing rendition (**). A few replacement
tags can be used in this command line template. (a) $
{source} : represent the absolute path for the input
resource you want to render. Its value is automatically
injected by the rendition extension package. Since the
rendition extension package works on Content Script
Resources, you do not have to worry about file system
housekeeping. (b) ${destination} :represent the absolute
path for the output resource, the engine is going to
generate. Its value is automatically injected by the
rendition extension package. Since the rendition
extension package works on Content Script Resources,
you do not have to worry about file system
housekeeping. c ${cookie} : represent a local
authentication cookie

amcs.rend.html2pdf.timeout
the default maximum wait time, in milliseconds, after
which a rendition attempt will be aborted.



(**)

136 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

rend¶

Installation (Windows)¶

External conversion engine package is provided as a compressed archive rend-win.zip. The
Archive contains following items:

chromium – folder containing an up to date version of Chromium (https://
www.chromium.org/Home) engine.
rend – pre-built NodeJS application leveraging Puppeteer (https://github.com/puppeteer/
puppeteer)

To install it:

Installation (Unix)¶

External conversion engine package is provided as a compressed archive rend.tar.gz. The
Archive contains following items:

chromium – folder containing an up to date version of Chromium (https://
www.chromium.org/Home) engine.
rend – pre-built NodeJS application leveraging Puppeteer (https://github.com/puppeteer/
puppeteer)
run_rend – a script that will be called by the Content Suite and will launch the
application

To install it:

Please refer to the third-party rendition engine's guide for a detailed explanation of all the available command line
parameters

•

•

 Extract the conversion engine package in the following location: 

 <OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

•

•

•

 Extract the conversion engine package in the following location:

Note: files inside dropin folder should belong to user that is used to run Content Server
service. Thus you can either perform extraction under the OTCS service user or change
ownership of the extracted files accordingly.



 <OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

 e.g.
 >tar -C <OTHOME>/module/anscontentscript_x_y_0/amlib/rend/dropin -xvf rend.tar.gz

137 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer

Configuration¶

 Configure the Rendition extension package in order to use the rend executable in the
Module Suite Base Configuration (/administration/modulesuite/#base-configuration)

Section rend

Windows

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin rend-win

amcs.rend.html2pdf.cmdline

"${source}" --cookie "${cookie}" -p "${destination}" --
format A4 --marginBottom 100px --marginTop 120px --
marginLeft 30px --marginRight 30px --scale 0.8 --
viewport 1240x1754

amcs.rend.html2pdf.timeout 60000

Unix

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin run_rend

amcs.rend.html2pdf.cmdline

"${source}" --cookie "${cookie}" -p "${destination}" --
format A4 --marginBottom 100px --marginTop 120px --
marginLeft 30px --marginRight 30px --scale 0.8 --
viewport 1240x1754

amcs.rend.html2pdf.timeout 60000

Configuration Property Configuration Proerty Meaning

amcs.rend.html2pdf.dropin
The relative path to the engine's executable. For security
reasons, the root of this path is the extension package's
dropin folder.



138 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

Configuration Property Configuration Proerty Meaning

amcs.rend.html2pdf.cmdline

The template of the command line instruction to be
used when performing rendition (**). A few replacement
tags can be used in this command line template. (a) $
{source} : represent the absolute path for the input
resource you want to render. Its value is automatically
injected by the rendition extension package. Since the
rendition extension package works on Content Script
Resources, you do not have to worry about file system
housekeeping. (b) ${destination} :represent the absolute
path for the output resource, the engine is going to
generate. Its value is automatically injected by the
rendition extension package. Since the rendition
extension package works on Content Script Resources,
you do not have to worry about file system
housekeeping. c ${cookie} : represent a local
authentication cookie

amcs.rend.html2pdf.timeout
the default maximum wait time, in milliseconds, after
which a rendition attempt will be aborted.

Dropin options

-“${source}” – replacement tag that will be substituted by the URL to the generated HTML Form. This
argument is mandatory and not editable.

-ck, --cookie [cookie] – value will be replaced by replacement tag that corresponds to the current user’s
session cookie. Should be in form “Name Value”. This argument is mandatory and not editable.

-p, --path \<path> – identifies target PDF file location. Value will be substituted by the replacement tag. This

argument is mandatory and not editable.

-f, --format [format] – PDF option. Paper format. If set, takes priority over width or height options. Defaults
to 'Letter'. Available options: Letter, Legal, Tabloid, Ledger, A[0-6].

-d – Debug is on. If specified debugging information is written to the log file. Use only for debugging
purposes. Log file located in \<OTHOME>\logs\cs_rend.log or when running application manually in
\<appDir>\log\cs_rend.log

-mb, --marginBottom [margin] - Bottom margin, accepts values labeled with units.

-mt, --marginTop [margin] - Top margin, accepts values labeled with units.

-mr, --marginRight [margin] - Right margin, accepts values labeled with units.

-ml, --marginLeft [margin] - Left margin, accepts values labeled with units.

-vp, --viewport [cookie] - PDF option. Set the viewport. Width and height of the page in pixels

-prt, --printmediatype - Use print media type. Boolean. Default: true.

-s, --scale [scale] - Scale of the webpage rendering.



139 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

Content Script Extension for SAP¶

What is it?¶

Content Script Extensions for SAP allows to integrate Content Script with the SAP™ ERP through
RFCs (Remote Functions Calls).

The integration allows you to perform the following:

connect to multiple SAP™ systems through JCo APIs;
invoke standard and custom SAP™ functions for retrieving ERP's information;
invoke standard and custom SAP functions for updating ERP's information;

Extension setup¶

The Content ^Scripting extension for SAP is part of the Module Suite bundle but is not included
in the main Module Suite installer. The extension package is provided on request by the
AnswerModule support team, the reason why it is not included in the main intaller is because, if
not configured correctly, it could cause problems with the installation of Module Suite.

-dhf, --displayHeaderFooter - Display header and footer. Boolean. Default: false.

-ht, --headerTemplate [template] - HTML template for the print header.

-ft, --footerTemplate [template] - HTML template for the print footer.

-pb, --printBackground - Print background graphics. Boolean. Default: true.

-pr, --pageRanges - Paper ranges to print, e.g., '1-5, 8, 11-13'. Defaults to the empty string, which means print
all pages.

-w, --width [width] - Paper width, accepts values labeled with units.

-h, --height [height] - Paper height, accepts values labeled with units.

-wu, --waitUntil [choice] - WaitUntil accepts choices load, domcontentloaded, networkidle0, networkidle2.

Defaults to 'networkidle2'.

For more detailed description of the option please refer to official Puppeteer documentation (https://
pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page)

•
•
•

SAP™ JCo Library Required

This extension package requires the SAP™ JCo library (https://support.sap.com/en/product/connectors/JCo.html) to
be available in the extension repository <OTHOME>/module/anscontentscript_x_y_z/amlib/sap and is certified for
use with SAP™ JCo version (3.0.6) when used on OpenText Extended ECM and version (3.0.10) when used on CSP.
SAP™ JCo library (https://support.sap.com/en/product/connectors/JCo.html) can be downloaded from SAP™

website.

140 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html

Below is the step by step guide on how to install the Extensions for SAP. Note: For the general
Module Suite and Module Suite Extensions Packages installation procedure please refer to
"Installing the suite" (/installation/installation/) section

Installing the Content Script Extension for SAP¶

Run the Content Script SAP Extension installer and follow the installation wizard steps:

 Select "Next" when ready to start the installation. 

 Accept all the required license agreements

 The installer will prompt you for the location of the installed Content Server. Browse to
your OTCS_HOME and select "Next".



141 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

/installation/installation/
/installation/installation/

 Click "Install" to start the installation

 The installation of the required libraries will be performed

 Deploy SSAP™ JCo in the extension package repository: <OTCS_HOME>/module/

anscontentscript_2_x_0/amlib/sap. The Content Script extension for SAP relies on SAP Java
Connector (SAP JCo) to support outbound communication with the SAP Server. SAP JCo



142 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

Installation validation¶

If the Content Script Extension for SAP has been successfully installed, a new configuration
section should appear in the Base Configuration (/administration/modulesuite/#base-
configuration) page:

Configuration options¶

List of available parameters specified below:

Configuration Property Configuration Property Meaning

amcs.sap.registerDestinationProvider

Determines whether the existing xECM connection or
a custom connection should be used.When set to
TRUE the custom destination data provider is used;
when set to FALSE the existing configured SAP xECM
connection is used.

amcs.sap.activeProfiles

List of the currently active and configured sap
extension profiles. As many other extension packages
Content Script Extension for SAP allows you to define
multiple configuration profiles in order to manage
multiple connections towards different systems.

amcs.sap.JCo.client.ashost.default Target SAP System server hostname

relies on a native bridge to implement the communication with the SAP server. This
native bridge is implemented by the SAP JCo native library (sapJCo.dll). Both the SapJCo
jar file and dll must be copied in the extension package repository.

To deploy SapJCo library follow this simple procedure:

Stop Content Server service

Copy library files to the destination mentioned above

Start Content Server service

◦

◦

◦

Deploy on clustered environment

In case of a clustered Content Server installation the above steps should be performed on every cluster node.

143 Installing Extension Packages

Copyright © 2013-2020 AnswerModules Sagl

/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

Configuration Property Configuration Property Meaning

amcs.sap.JCo.client.client.default Target SAP System Client number

amcs.sap.JCo.client.sysnr.default Target SAP System ID

amcs.sap.JCo.client.user.default Target SAP System username to logon with

amcs.sap.JCo.client.passwd.default
Target SAP System password for the specified
username

amcs.sap.JCo.client.lang.default Language to use for the connection

Installing Extension for DocuSign

Prerequisites¶

This guides assumes the following components to be already installed and configured:

AnswerModules ModuleSuite

Script Console (OPTIONAL - only for DocuSign webhook configuration)

The following information will be required to complete the configuration procedure:

DocuSign API key

Docusign API credentials

We will refer to the Content Server installation directory as OTCS_HOME

We will refer to the Script Console installation directory as SCRIPT_CONSOLE_HOME

OpenText Activator

If you have not installed the "OpenText Activator for SAP Solutions" module on your system, you can only use the
custom destinations. In this case it is necessary to install the SAP JCo version compatible with your environment.

•

•

•

•

Authentication Options

The Content Script extension supports two different authentication options when invoking DocuSign APIs:

Username / Password
Account GUID / RSA Certificate

Refer to the official DocuSign REST API guides (https://developers.docusign.com/esign-rest-api/guides/building-
integration/) for details on how to generate your credentials.

•
•

144 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

https://developers.docusign.com/esign-rest-api/guides/building-integration/
https://developers.docusign.com/esign-rest-api/guides/building-integration/
https://developers.docusign.com/esign-rest-api/guides/building-integration/
https://developers.docusign.com/esign-rest-api/guides/building-integration/

Installation procedure¶

The Module Suite DocuSign Extension includes two components:

Content Script Extension for DocuSign

This component enables the **docusign* service API in Content Script. The service is the
entry point to integrating DocuSign functionality within your applications.*

Script Console Extension for DocuSign (Optional)

This component enables a **DocuSign webhook endpoint* on Script Console. It is only
required if you want to receive automatic update notification from DocuSign whenever an
envelope status changes. For more details, refer to the official DocuSign REST API Guides
(https://developers.docusign.com/esign-rest-api/code-examples/webhook-status) related
to this topic.*

Installing the Content Script Extension for DocuSign¶

Run the Module Suite DocuSign installer:

Follow the installation wizard steps:

•

•

1
module-ansmodulesuitedocusign-1.5.0-OTCSxxx.exe

 Select "Next" when ready to start the installation. 

145 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

https://developers.docusign.com/esign-rest-api/code-examples/webhook-status
https://developers.docusign.com/esign-rest-api/code-examples/webhook-status
https://developers.docusign.com/esign-rest-api/code-examples/webhook-status
https://developers.docusign.com/esign-rest-api/code-examples/webhook-status

 The installer will prompt you for the location where Content Server is installed. Browse
to your OTCS_HOME and select "Next".



 Review the installation steps for each component to be installed.

146 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

 Click "Finish" to complete the unpacking of the module

147 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Installing the Script Console Extension for DocuSign (OPTIONAL)¶

Run the Script Console DocuSign Extension installer:

Follow the installation wizard steps

Staging

At this point, the Module has been deployed in the Content Server Staging folder and is available for module install
through the Content Server administration pages.

 Access the Content Server Admin pages > Core System - Module Configuration > Install
Modules



 Locate the AnswerModules Module Suite extension for Smart UI module and proceed
with installation



 Restart the OTCS services when prompted in order for the installation to be completed.

1
script-console-ext-docusign-2.4.0-OTCSxxx.exe

 Select "Next" when ready to start the installation. 

148 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

 The installer will prompt you for the location where your target Script Console instance
is installed. Browse to your SCRIPT_CONSOLE_HOME and select "Next".



 Review the installation steps for each component to be installed.

149 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Update the security configuration to allow access to the webhook endpoint. Edit the Script
Console security config file:

 Click "Finish" to complete the installation

150 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Add the following rule:

Configuration¶

The DocuSign Connector requires a few configuration parameters in order to be able to
communicate with DocuSign systems using the eSignature REST APIs.

In the OTCS Admin pages > AnswerModules Administration > Base Configuration section,
complete the "docusign" API configuration.

The following parameters are available:

Key Description

amcs.docusign.activeProfiles

Comma separated list of active DocuSign Accounts
profiles (default: "default"). This is a local identifier and
will not be sent over to DocuSign. It is only relevant
when more than one set of configurations has to be
specified.

amcs.docusign.appKey.default
DocuSign Integration Key: identifies your app for the
DocuSign platform.

amcs.docusign.authUser.default DocuSign Account GUID or Username

amcs.docusign.authServer.default
DocuSign authentication endpoint. This can be either
account-d.docusign.com for sandbox testing or
account.docusign.com for a production account.

1
<SCRIPT_CONSOLE_HOME>\config\cs-console-security.xml

1
<s:http pattern="/ext/docusign/docuSign.cs" security="none"/>

151 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Key Description

amcs.docusign.appSecret.default

DocuSign Account Password or RSA Certificate. If an
Account GUID has been provided in the
"amcs.docusign.authUser.default" field, than this MUST
be an RSA Certificate private key. Otherwise, if a
Username has been provided, this MUST be the account
password.

amcs.docusign.appBasePath.default

DocuSign Integration Base Path. This can be either
https://demo.docusign.net/restapi (https://
demo.docusign.net/restapi) for sandbox testing or
https://www.docusign.net/restapi (https://
www.docusign.net/restapi) for a production account.

amcs.docusign.notifURI.default

DocuSign Notification WebHook URI. This is the
absolute, publicly accessible URL that DocuSign will
call for push notifications. It refers to the endpoint
installed on your Script Console instance. This value is
OPTIONAL and only required if using the push
notifications.

Admin dashboard¶

The Module Suite DocuSign Extension supports the storage of a local copy of the signing
envelope details within Content Server. The envelope status can either be periodically updated
through a scheduled job, or automatically updated using push notifications by DocuSign (using
a webhook pattern). An overview of the status of current and past envelopes can be visualized
using the DocuSign Connector Admin dashboard.

The dashboard is a Content Script based tool that can be installed in the Content Script Volume
using the Module Suite import/upgrade tool.

RSA Certificate format

If using the RSA certificate authentication (combined with an account GUID), the following requirements must be
met:

RSA Certificate must be stored on a single line.
Line breaks must be replaced with line feeds (\n).
The "-----BEGIN RSA PRIVATE KEY-----" block and "-----END RSA PRIVATE KEY-----" must be included.

Example:

-----BEGIN RSA PRIVATE KEY-----\nxxx....xxx\nxxx....xxx=\n-----END RSA PRIVATE KEY-----\n

Save the Base Configuration and restart Content Server services when requested

•
•
•

152 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi

Before running the import, you should make the lib file available to the tool with the following
steps:

Now that the library is available, proceed to the import with the following steps:

Once the import is complete, you will be able to access the dashboard by navigating to the
following Content Server location:

and running the Dashboard script.

 On the server, navigate to the DocuSign Extension Module folder

and locate the file named docusign integration.lib.



1
<OTCS_HOME>\module\ansmodulesuitedocusign_1_5_0\library

 Copy the file to the library folder within the Content Script Module:

1
<OTCS_HOME>\module\anscontentscript_2_4_0\library

 In a web browser, open the Module Suite Administration Base Configuration page. If
working in a clustered environment, make sure you connect to the same server on which
the library file has been copied.



 Use the "Import" tool within the base configuration to import the DocuSign Integration
library



1
Content Script Volume > DocuSign Integration > CSTools

153 Installing Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Applying HotFixes

Module Suite hotfixes are typically distributed in the form of compressed file archives (.zip
files).

The content of the archive is a folder structure that mirrors the structure of the Content Server
installation directory (e.g. ''E:\Opentext'' or ''/opt/opentext/otcs'').

Below an exemplar structure of an ''hotfix'' archive:

├ module
│ ├ anscontentscript_X_Y_Z
│ ├ amlib
│ ├ ...
│ ├ ...
│ ├ hotfixes
│ │ └──── hotFix_ANS_XYZ_###.hfx
│ ├ ...
│ ├ ojlib
│ └ ...
│
└ support
 ├ anscontentscript
 ├ ...
 ├ amui
 │ └──── js
 │ └────...
 └ ...

Naming convention

154 Applying HotFixes

Copyright © 2013-2020 AnswerModules Sagl

Hotfixes deployment¶

To install an hotfix the files provided in the hotfix archive must be deployed within the Content
Server installation directory in order to overwrite existing files and/or to add new files to the
AnswerModules product binaries.

The suggested procedure for installing an hotfix is the following:

Unless otherwise instructed by the hotfix installation notes:

AnswerModules hotfixes follow a simple naming convention: they are all preceded by hotFix_ANS_ followed by an
optional string that identifies the AnswerModules product (e.g. DS for DocuSign Connector) (if absent the hotfix

must be consider for Module Suite) followed by three digits identifying the version of the AnswerModules product
followed by three digits identifying the hotfix followed by an optional string that identifies the OpenText Content
Suite version the hotfix is compatible with.

e.g.
hotFix_ANS_240_001.zip

Hotfix 001 for Module Suite version 2.4.0

hotFix_ANS_DS_150_002_CS16.zip
Hotfix 002 for DocuSign Connector version 1.5.0 to be utilized on Content Server version 16.0.X

hotFix_ANS_SMUIEXT_150_001.zip
Hotfix 001 for AnswerModules Smart View extension version 1.5.0

cumulative_hotFix_ANS_240_CS16X_009_024

Cumulative hotfix (containing hotfixes from 009 to 024) for Module Suite version 2.4.0 to be utilized on
Content Server 16.0.X

 Extract the archive in a temporary folder;
 Read the patch installation notes carefully. The installation notes come in the form of a
text file ending with .hfx located within the module/anscontentscript_x_y_z/hotfixes
folder. The installation notes contains information about the issues addressed by the
hotfix and any additional deployment instructions to follow;



cumulative hotfix

In case of a cumulative hotfix, carefully read all the hotfixes installation notes.

 Check the contents of the archive and backup all files in installation folder of the
Content Server that will be overwritten by the hotfix;



 Stop the Content Server services;
 Copy the contents of the hotfix in the Content Server installation directory or follow
hotfix's more specific instructions for deployment;



 Restart the Content Server services

Important notes

Always read the hotfix notes before deploying the hotfix. Some hotfixes require additional operations to be
performed before or after deploying the binaries;

•

155 Applying HotFixes

Copyright © 2013-2020 AnswerModules Sagl

Upgrading Module Suite

Upgrading from a previous version¶

Whenever a new release of Module Suite is released, it is highly recommended for customers to
update their installation. New releases not only contains fixes for the identified bugs, but most
importantly new features that might open new usage scenarios for your Module Suite
applications. Updating Module Suite is quite a straight forward procedure, that should take
between 15 to 45 minutes (depending on how complex your Content Server architecture is). The
system down time is limited to the two restarts required for each node.

We will refer to the Content Server installation directory as %OTCS_HOME%

Upgrading the primary node¶

This section only applies to your primary cluster node, or to non-clustered environments (single
box). Please see section “Upgrading a secondary node” for the update procedure on secondary
nodes.

Deploy the Content Script Module and the Beautiful WebForms Module to the staging
folder (Install Content Script, Install Beautiful WebForms).

Install the desired Content Script extension packages for the newer version (Install
Content Script extension packages)

Perform the modules upgrade using the standard Content Server tools

Login as Administrator and access the Module administration panel

Always perform a backup of the patched binaries;
Make sure that the version of the hotfix matches exactly the version of the target AnswerModules product

and OpenText Content Suite environment.
Hotfixes are identified by a progressive numbering. It is imperative that hotfixes are deployed respecting
the correct sequential order, as it is possible that the same resources are patched by different hotfixes (e.g.
hotFix_ANS_260_002.zip (progressive number: 2) must not be installed after hotFix_ANS_260_003.zip
 (progressive number: 3). If, for any reason, an hotfix has been skipped and has to be later installed on a

system, all subsequent hotfixes must be reinstalled in order to ensure that no newer change has been
reverted
When OpenText Content Suite is running on a clustered environment, hotfixes must be installed on all the
servers on which Content Suite is deployed.

•
•

•

•

•

•

Do not complete the installation procedure

For both the two procedures mentioned above stop at the step: Select “Install Modules”

•

1.

156 Upgrading Module Suite

Copyright © 2013-2020 AnswerModules Sagl

../../installation/contentscript/
../../installation/beautifulwebforms/
../../installation/extpacks/
../../installation/extpacks/

Select “Upgrade Modules”
From the available modules, select “Content Script X.Y.Z”
Follow the installation steps and re-start Content Server when prompted.
Return to the Module administration. In the “Update Modules” panel, select
“Beautiful WebForms X.Y.Z”
Follow the installation steps but do not restart Content Server

Stop Content Server

Apply relevant hot fixes

Start Content Server

From the Administration Home, select AnswerModules Administration > Base
Configuration, then if necessary, change the core configuration or the configuration of the
extension modules. Additionally, make sure you apply the new License Key in the relevant
configuration entry.

Using the import and upgrade tool perform the library upgrade

2.
3.
4.
5.

6.

•

•

•

•

Saving the Base Configuration is required even if no changes have been applied to the configuration page, since
some of the values (typically configuration options of newly installed extension packages) have to be saved at least
once. Additionally, saving the Base Configuration is necessary to the licensing process.

•

What do I need to upgrade ?

How the library upgrade works¶

The 'Upgrade' operation will rename the existing library folders in the Content Script volume, and import a new
version of the same (the only exception is the 'CSFormTemplates' folder, which will be discussed later). As such, any

modification that has been applied to one of the libraries will be relocated and no longer available.

Examples include:

any custom Beautiful WebForms components added to the CSFormSnippets folder
any custom Rest API endpoints added to the CSServices folders
any callbacks configured in the CSEvents or CSSynchEvents folders
any Classic UI modifications applied through the CSMenu, CSAddItems, CSBrowseView,
CSBrowseViewColumns

any other object created or modified within one of the upgraded folders

As part of the upgrade operation, you should identify such changes and make sure they are ported to the new
libraries.

CSFormTemplates have a slightly different upgrade process. Since objects in this folder are referenced by object
DataID (their unique identifier on OTCS) they can't be replaced with the updated version, since this would
potentially cause issues in any existing form using the template. For this reason, the upgrade process for

•
•
•
•

•

157 Upgrading Module Suite

Copyright © 2013-2020 AnswerModules Sagl

Cleanup. The folders named “Backup-_yyyyMMdd-AAAAAA” are backup folders containing
the previously installed library scripts/snippets. They can be safely exported and
removed

Upgrading a secondary node¶

This procedure only applies to cluster secondary nodes. The primary node should always be
upgraded first: the steps below assume that the primary node has already been upgraded. To
upgrade the primary node (or if your environment is a non-clustered environment) please refer
to section “Upgrading the primary node”. Upgrading the secondary nodes in a cluster has the
purpose of re-aligning the installed modules and support folders with the primary node in the
cluster. Any cluster-wide configuration or update (for example, the library upgrade procedure) is
not necessary on secondary nodes as it has already been executed on the primary node.

The following steps should be executed on each secondary node

Make a copy of the following resources from the primary node, and make them available
in a working folder on the secondary node:

%OTCS_HOME%/module/anscontentscript_x_x_x
%OTCS_HOME%/module/ansbwebform_x_x_x
%OTCS_HOME%/support/anscontentscript
%OTCS_HOME%/support/ansbwebform

Stop Content Server’s services

Move the old module and support folders to a backup location

Copy the new folders in place of the old folders

Reconcile the opentext.ini (with particular reference to the [Modules] section) file in
%OTCS_HOME%/config

CSFormTemplates automatically updates each single template by adding a new version to the object, thus
preserving the original DataID. For this reason, no "backup" folder will be found for CSFormTemplates..

•

In case any of the standard components were customized, patched or otherwise modified, or new custom
components were added within the standard library, make sure that you transfer any relevant changes to the new
libraries before deleting the old version.

Script Console

Script Console can be upgraded performing a so-called "parallel" upgrade, which means installing on the same/
different server the newer version of the console and configure it as the previous one. This typically requires to copy
over the relevant configuration files from the previous Script Console together with any custom script you might
have created/deployed on the console: %SCHOME%/config/cs-console-schedulerConfiguration.xml, %SCHOME%/

config/cs-console-security.xml %SCHOME%/config/cs-console-systemConfiguration.xml

•

1.
2.
3.
4.

•

•

•

•

158 Upgrading Module Suite

Copyright © 2013-2020 AnswerModules Sagl

Start the Content Server’s services

Uninstalling Module Suite

Uninstallation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Before proceeding with the uninstallation of Module Suite modules you need to complete some
housekeeping routines. These routines are not strictly mandatory and should only be
performed if you do not intend to reinstall the Module Suite on your system in the future.

•

 Shutdown CSEvents feature:

This feature generates records in the Distributed Agent framework table, which are then
managed by the CallbacksManagerCS handler. After uninstalling the Content Script
module this type of handler will not be longer available, with the result that several
errors will be generated in the DA framework's tables. To prevent these errors from
occurring, it is safer to disable the feature completely and wait for all occurrences of this
type of activity to be processed by the DA.

From the Administration Home, select AnswerModules Administration > Base
Configuration, then enter 34 in the amcs.core.debugEnabled property and save the
current configuration.

Once all the nodes have been restarted wait until all the occurences of
CallbacksManagerCS jobs have been processed and removed from the DA table. You
can monitor this process by executing the query below:



◦

RESTART REQUIRED

A service rest of all the nodes that are part of your cluster is required.

amcs.core.debugEnabled is now 'Module Suite - Configuration Options'

In recent version of Module Suite the property amcs.core.debugEnabled has been associated with the label

Module Suite - Configuration Options in the Base Configuration

◦

1

2

3

4

5

select count(1) as "Total", 'WorkerQueue' as "Queue" from WorkerQueue where HandlerID
union all
select count(1) as "Total", 'WorkerQueuePending' as "Queue" from WorkerQueuePending
union all
select count(1) as "Total", 'WorkerQueueCurrent' as "Queue" from WorkerQueueCurrent

159 Uninstalling Module Suite

Copyright © 2013-2020 AnswerModules Sagl

 Delete all Content Server's columns or facets having a Content Script script as their
datasource.



 Stop and delete all instances of worklows using Module Suite modules. Upon Module
Suite uninstallation all the currently active workflows, which make use of a feature
related to one of the Module Suite modules, will not be able to continue correctly, to
avoid errors you must wait for these workflows to end or stop and delete them.



Modify Workflow Map

Remove any Content Script Step, Content Script Workpackage, Content Script Event Script from all your
Workflow Maps

 Stop any scheduled script

From the Administration Home, select AnswerModules Administration > Manage
Content Script Scheduling unschedule any previously scheduled Content Script
script.

Wait the completion of any previously scheduled script execution. You can monitor
this process by executing the query below:



◦

◦

1

2

3

4

5

select count(1) as "Total", 'WorkerQueue' as "Queue" from WorkerQueue where HandlerID
union all
select count(1) as "Total", 'WorkerQueuePending' as "Queue" from WorkerQueuePending
union all
select count(1) as "Total", 'WorkerQueueCurrent' as "Queue" from WorkerQueueCurrent

 (OPTIONAL) Collect and delete all the Content Script, Smart Pages, and Beautiful
WebForm Views Object objects on your system.

Although not strictly necessary, this action will prevent you from having objects on
your system that the application can no longer handle correctly. In order to easily
find collect and delete the afore mentioned objects we suggest you to create and
execute the script below, which it will create in the same container where the script
was created a collection containing all the scripts pages and views in your system.



◦

1

2

3

4

5

6

7

8

collection = docman.createCollection(self.parent, "Module Suite Objects", "Module Suite Managed Obje
/*
43100 BWF Views
43200 Content Script
43300 SmartPages
*/
nodes = docman.getNodesFastWith(sql.runSQLFast("""select distinct DataID "DataID" from DTree where S
collection.addNodes(nodes)

Execute the script as Admin

160 Uninstalling Module Suite

Copyright © 2013-2020 AnswerModules Sagl

Don't forget to create and run the above script as an "Admin" user to make sure you can collect all objects
on your system regardless of the associated permissions.

 (OPTIONAL) Delete the Content Script Volume and its content.

Although not strictly necessary, this action will prevent you from having objects on
your system that the application can no longer handle correctly. From the
Administration Home, select AnswerModules Administration > Open The Content
Script Volume once in the volume delete the volume's content.



◦

 Delete Beautiful WebForm SmartEditor table.

From the Administration Home, select AnswerModules Administration > Base
Configuration then click on the link DELETE under the Manage Beautiful WebForms
database section. The action will require confirmation.



◦

 Using standard Content Server features uninstall all the Module Suite modules

Uninstallation complete

The Module Suite is no longer on your system. We miss you already.

161 Uninstalling Module Suite

Copyright © 2013-2020 AnswerModules Sagl

Content Script

Content Server object

Content Script objects are document-class objects on Content Server.

Content Scripts are restricted objects: as such, users must be enabled to the creation of new
objects through the Administration pages.

Content Scripts are executable objects, and the execution is the default action associated to
the object.

Being standard objects, Content Scripts comply with Content Server permissions model. Make
sure you assigned the proper permissions to your scripts.

Upon creation, the object can be edited with the web-based IDE selecting the 'Editor' function
in the object function menu. The function is also available as a promoted function.

Creating a Content Script¶

To create a new Content Script object you can leverage the standard add item menu:

162 Content Script

Copyright © 2013-2020 AnswerModules Sagl

Object's properties¶

This section covers the following topics:

Content Script Static variables
Scheduling a Content Script
Running a Content Script as a different user
Changing the default GUI icon for a Content Script object

Static variables¶

For every Content Script, it is possible to define a set of static, precompiled variables whose
values will be available when the script is executed.

The framework supports the definition of these variables by means of a second script, whose
outcome is the data map containing the values. For performance reasons, this second script is
executed only when it changes (or when execution is explicitly forced by an editor), and the
results are stored as part of the script object.

One of the reasons for having a script to define a static variable (instead of explicitly setting the
value of the variable itself) is code portability: instead of defining the value of a variable, it is
possible to define a rule to calculate that value. A typical example would be the Object ID of an
object located in a specific position in Content Server: in case the code is moved to a different
environment, the ID would be recalculated automatically.

Static variables are accessible within the Content Script through the csvars object.

•
•
•
•

Each Content Script object has its own csvars constants. In complex applications, that include multiple Content
Script objects, it is often useful to have all constants defined in one single file. This can be done by creating a
Content Script dedicated to be the “constants” script, that will be run by the single scripts in the application to load

the variable values in the context.

163 Content Server object

Copyright © 2013-2020 AnswerModules Sagl

Scheduling¶

Content Script supports the automatic execution of scripts through its internal scheduler.

The Content Script scheduling utility is available from within the Specific > Advanced Settings
tab or from the Content Script Editor in the Administration tab (if visible). The utility allows to
schedule the automatic execution of Content Scripts (that is, without the need for a user to
trigger the execution explicitly).

The scheduling is configured by means of a cron expression. A cron expression is a string
comprising a set of fields separated by spaces, and identifies a set of times.

Cron expressions are powerful but can also be quite complex. For this reason, a simplified
configurator with drop-down menus can be used to create the desired cron expression.

Skilled users can always flag the “Advanced Mode” checkbox to disable the configurator and
compose their own expressions.

Once ready, the scheduler can be enabled by flagging the “Enable Scheduling” checkbox.

It is possible to stop a script from being rescheduled in case of execution errors. To do so,
simply flag the “Stop on Error” checkbox.

Where is the log ?

164 Content Server object

Copyright © 2013-2020 AnswerModules Sagl

Impersonate¶

Content Script supports the execution of a script impersonating specific users.

This configuration applies for both:

scripts explicitly executed by users

scripts executed by the system (scheduled, workflow steps, callbacks, etc…)

The “Run As” configuration panel is accessible within the Specific > Advanced Settings tab or
from the Content Script Editor in the Administration tab (if visible).

Icon Selection¶

Given the flexible nature of Content Script objects (both in terms of behaviour and execution
outcome) it is often useful to be able to distinguish them at-a-glance. One way is to customize
the default icon used by Content Server for the object.

The desired icon can be selected by clicking on the icon button on the Content Script's
Developer tab and selecting a specific icon within a set of available icons.

Content Script scheduling takes advantage of the Content Server’s Distributed Agent framework. While normally
executing a script will cause it to be run in the current front end server, a scheduled script could actually be

executed on any server on which Distributed Agents are activated.

•

•

In order to be able to perform a “Run As” configuration, a user must have impersonation privileges.

165 Content Server object

Copyright © 2013-2020 AnswerModules Sagl

Content Script editor

Content Script objects can be edited with the dedicated web-based IDE selecting the 'Editor'
 function in the object function menu. The function is also available as a promoted function.

166 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

The web-based IDE (Integrated Development Environment) for Content Script appears as
follows:

167 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

Shortcuts¶

The following keyboard shortcuts are available while using the editor:

Shortcut Description

Ctrl + S Save the current script (add a new version)

Ctrl + H Toggle the online Help window

Ctrl + F Open the ‘Search’ tools panel

Ctrl + Shift + F Open the ‘Search and Replace’ tools panel

Ctrl + Space Show the code autocompletion hints

Ctrl + J Trigger the execution in the test frame

Ctrl + P Inject the full path of the selected node in the Content Script editor

168 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

Top Bar controls (DEVELOPER)¶

Command Description

Versions

Save the script (adds a new version)

Save the content script properties (i.e. the icon) as well as the static
variables (does not add a new version)

Open the object’s Versions tab

Close the Content Script Editor

Edit

Erases the last change done

Opposite of Undo

Change the script’s associated icon

Display the last 200 lines of the ModuleSuite’smaster log file

Disable the script's real-time validation

Execution

Run the script in the current window (CTRL + J)

Save the script and run it, showing the result in the editor’s bottom panel

Comparison

Toggle comparison: toggles the comparison of the current version of the
script with the selected.

169 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

Command Description

Editor

Theme:Changes the theme applied to all the RPA embedded editors

Help

Access the module’s online guide and the support portal

Validation

Red label: The script failed the validation and most likely will fail to compile

Green label: The script is well-formed

Top Bar controls (ADMINISTRATOR)¶

Command Description

Versions

Save the content script properties (i.e. the icon) as well as the static
variables (does not add a new version)

Scheduling

Toggle script scheduling

Toggle script advance scheduling mode

Toggle re-scheduling abortion on script’s execution error

Impersonation

Select the user that will be always used to run the script

Clear impersonation setting

170 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

Command Description

Manage Log

Trigger ModuleSuite’s master log rotation

Trigger ModuleSuite’s master log download

Auto-completion¶

The Content Script Editor features a code completion assistant functionality. While typing use
the ctrl + space key combination to retrieve the suggested values.

In some cases the Content Script’s inference engine might not be capable of determining the
actual type of the expression you are trying to auto-complete. In these cases the auto-complete
feature will prompt you to firstly specify the type against which the auto-completion should be
performed and then will switch to the standard behaviour.

If the actual type (class) of your expression is not listed among the results you can still specify
the fully qualified class name to autocomplete against that class: e.g. (java.lang.String)

171 Content Script editor

Copyright © 2013-2020 AnswerModules Sagl

Language basics

Content Script is a Domain-Specific Programming Language (DSL) for OpenText Content Server.

The language is based on Oscript and exposes a Groovy interface to developers. Groovy (
http://www.groovy-lang.org/ (http://www.groovy-lang.org/)) is a widespread dynamic language
for the Java Virtual Machine, particularly indicated for the creation of DSLs.

List of the most common API objects returned by Content Script APIs 

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Content Script API Objects		
ACSBrowseViewRowProvider	CSMemberImpl	CSRMRecordTemplate
AMBWFWidgetsLib	CSMemberPrivilegesImpl	CSRMRecordTraits
AdlibJobResult	CSMemberRightImpl	CSRMUserFunctions
CSANSTemplateFolderImpl	CSMenu	CSRMXReference
CSAssignmentImpl	CSMenuItem	CSReportImpl
CSAttachmentImpl	CSMilestoneImpl	CSReportResultImpl
CSBeautifulWebFormViewImpl	CSMilestoneInfoImpl	CSResourceImpl
CSBrowseViewAddItemButton	CSNewsBuilderImpl	CSScriptImpl
CSBrowseViewColumn	CSNewsImpl	CSSearchQueryBuilderImpl
CSBrowseViewMultiItemButton	CSNodeAuditDataPageImpl	CSSearchResultImpl
CSBrowseViewRow	CSNodeAuditRecordImpl	CSSetAttributeImpl
CSCategoryFolderImpl	CSNodeImpl	CSShortcutImpl
CSCategoryImpl	CSNodePageImpl	CSSpreadsheet
CSCategoryTemplateImpl	CSNodeResultImpl	CSSubMenu
CSChannelImpl	CSNodeRightImpl	CSTaskBuilderImpl
CSCollectionImpl	CSNodeRightsImpl	CSTaskGroupImpl
CSCompoundDocImpl	CSPDFFormField	CSTaskGroupInfoImpl
CSCompoundDocReleaseImpl	CSProjectImpl	CSTaskImpl
CSDiscussionImpl	CSProjectInfoImpl	CSTaskInfoImpl
CSDiscussionItemImpl	CSProjectPartecipantsImpl	CSTaskListImpl
CSDocumentImpl	CSProjectRoleUpdateInfoImpl	CSTaskListInfoImpl
CSEmailImpl	CSRMClassification	CSUnreadInfoImpl
CSEmailMessage	CSRMClassificationTypes	CSUrlImpl
CSExportOptionsImpl	CSRMField	CSUserImpl
CSFTPFile	CSRMFieldsInfo	CSVersionImpl
CSFolderImpl	CSRMHold	CSVirtualFolderImpl
CSFormImpl	CSRMHoldDistribution	CSWebReportImpl
CSFormTemplateDefinitionImpl	CSRMHoldDoc	CSWordDoc
CSFormTemplateImpl	CSRMHoldPage	CSWorkPackageImpl
CSGenerationImpl	CSRMProvenance	CSWorkflowAssignedTaskImpl
CSGroupImpl	CSRMRSIRetention	CSWorkflowAttachmentsImpl
CSImportOptionsImpl	CSRMRecord	CSWorkflowAttributesImpl
CSWorkflowAuditRecordImpl	CSWorkflowCommentsImpl	CSWorkflowFormDataImpl
CSWorkflowInstanceImpl	CSWorkflowMapImpl	CSWorkflowQueryBuilderImpl
CSWorkflowSearchHandleImpl	CSWorkflowStartDataImpl	CSWorkflowFormsImpl
CSWorkflowTaskActionsImpl	CSWorkflowTaskCommentImpl	CSWorkflowTaskDetailsImpl
CSWorkflowTaskImpl	CSWorksheet	FTPConfigProfile
FieldInfo	Form	GCSAdlibJob
GCSCategory	GCSTableOfContents	GCSWatermark
LDAPConnection	NodeListRowProvider	PDFOverlayText
PDFWaterMark	SQLQueryRowProvider	SampleContextAwareObject
SampleObject	SearchResultRowProvider	SinglePageRowProvider

172 Language basics

Copyright © 2013-2020 AnswerModules Sagl

http://www.groovy-lang.org/
http://www.groovy-lang.org/

Content Script language syntax is fully compatible with Groovy.

Under the hood, a mix of Oscript and Java features allow for a deep integration with Content
Server functionalities, as well as for an extreme ease of integration with external systems.

The following sections are meant to be an introduction to the language.

Statements¶

The definition of variables can be either generic or restricted to a specific type. Assigning a
value to a variable that does not match its type will force the engine to attempt to cast its value
to the given type. In case no conversions can be done, it will result in an error.

With String variables, a few useful tricks are available:

// Defining a local variable can be done either by
// 1) declaring explicitly its type
// 2) using the "def"
int anInt = 1

String aString = "text"

def anObject = "anything"
anObject = 123

// Strings can be defined both with quotes ('') or double quotes ("")
String aString = "text"
String anotherString = 'text'

// Selecting the alternative "" or '' can be useful if quotes are present in the string content
String aQuote = "this is a quote: 'My words...' "
String anotherQuote = 'this is a quote: "My words..." '

// using triple """ allows to span across multiple lines for string
// definition. Useful for readable SQL queries, for example..
String multilineString = """SELECT *
 FROM DTREE
 WHERE DATAID = 2000"""

Lists and Maps can be defined very easily
def aList = ["firstElement", "secondElement"]

def aMap = [firstKey:"firstValue", secondKey:"secondValue"]

// statements can span across multiple lines
def multilineDefinition = ["firstElement",
 "secondElement"]

// collections can contain different kinds of elements
def aMapWithStringsAndInts = [first:"one", second:2

173 Language basics

Copyright © 2013-2020 AnswerModules Sagl

Basic Control Structures¶

Below are the basic structures for flow control and iteration

if – else statement

if – else if – else statement

inline if statement

switch statement

while loop

for loop

Flow control: if – else¶

Flow control: if - else if - else¶

Flow control: inline if - else¶

Flow control: switch¶

•

•

•

•

•

•

if(a == b){
 //do something
} else {
 //do something else
}

if(a == b){
 // do the first thing
} else if(c == d){
 // do a second thing
} else {
 // do something else
}

a = (b == c) ? "c is equal to b" : "c is different from b"

switch (a) {
 case "a":
 result = "string value"
 break

 case [1, 2, 3, 'b', 'c']:
 result = "a mixed list of elements"
 break

 case 1..10:

174 Language basics

Copyright © 2013-2020 AnswerModules Sagl

Looping: while¶

Looping: for¶

Operators¶

All Groovy operators can be used in Content Scripts:

 result = "a range"
 break

 case Integer:
 result = "is an Integer"
 break

 case Number:
 result = "is a Number"
 break

 default:
 result = "default"
}

def a = 0

while (a++ < 10){
 // do something ten times
}

def b = 10

while (b-- > 0) {
 // do something ten times
}

// Standard Java loop
for (int i = 0; i < 5; i++) {

}

// range loop
for (index in 0..100) {
 // do something
}

// list or array loop
for (index in [0, 10, 20, 40, 100]) {
 // do something 5 times
}

// map looping
def aMap = ['first':1, 'second':2, 'third':3]

for (entry in aMap) {
 // do something for each entry (the values can be accessed and used)
 entry.value
}

175 Language basics

Copyright © 2013-2020 AnswerModules Sagl

Operator Name Symbol Description

Spaceship <=>
Useful in comparisons, returns -1 if left is smaller 0 if == to right or
1 if greater than the right

Regex find =~ Find with a regular expression

Regex match ==~ Get a match via a regex

Java Field
Override

.@
Can be used to override generated properties to provide access to
a field

Spread *. Used to invoke an action on all items of an aggregate object

Spread Java
Field

*.@ Combination of the above two

Method
Reference

.&
Get a reference to a method, can be useful for creating closures
from methods

asType Operator as Used for groovy casting, coercing one type to another.

Membership
Operator

in Can be used as replacement for collection.contains()

Identity
Operator

is
Identity check. Since == is overridden in Groovy with the meaning
of equality we need some fallback to check for object identity.

Safe Navigation ?. returns nulls instead of throwing NullPointerExceptions

Elvis Operator ?: Shorter ternary operator

Methods and Service Parameters¶

Methods on objects can be called using the dot "." followed by the method signature and
parameter clause.

Methods can be called omitting the parenthesis in the parameter clause, given that (a) there is
no ambiguity and (b) the method signature has at least one parameter.

out << template.evaluateTemplate("""
#@csform(false, "Submit")
 <label for="myFile">File to be uploaded</label>
 <input type="file" name="myFile" />
#end
""")

if(params.myFile && params.myFile.filelength){
 def parentNode = docman.createFolder("MyFolder")
 def file = new File(params.myFile)
 if(file && file.canRead()){
 docman.createDocument(parentNode, params.myFile_filename, file, "", false, parentNode)
 //Redirect after submit
 redirect "${url}/open/${self.ID}"
 }
}

176 Language basics

Copyright © 2013-2020 AnswerModules Sagl

Properties and Fields¶

Properties and public fields of objects can be accessed using the dot "." followed by the
property or field name.

A safe syntax to navigate through fields is available in Groovy by adding a "?" before the dot. In
this case, the chain will be interrupted if one of the intermediate values is undefined, avoiding
an exception to be raised.

Comments¶

Closures¶

Content Script inherits from Groovy the concept of Closures. A closure is an open, anonymous,
block of code that can take arguments, return a value and that can be assigned to a variable.

// In certain cases, parenthesis can be omitted
docman.createFolder "MyFolder"

def folder = docman.createFolder("myFolder")

// Accessing an object property
def me = folder.createdBy

// Safe field access (no exception raised if folder is NULL)
def me = folder?.createdBy

// Comments are available as single line // and multiline /* */

def a = 1 // A comment can close a line

/* Or span
over multiple
lines */

// Define a closure and assign it to a variable
def addNumbers = { def num1 , def num2 -> //Arguments
 return (num1 as int)+(num2 as int)
}

out << "Calling the addNumbers closure:${addNumbers(4, "5")}
"

addNumbers = { String... arguments -> // Variable number of arguments (MUST be the last parameter)
 def total =0
 arguments.each{total+=(it as int)}
 return total
}

out << "Calling the addNumbers closure:${addNumbers("1", "2","3")}
"

177 Language basics

Copyright © 2013-2020 AnswerModules Sagl

Content Script programming valuable resources¶

A number of resources can be extremely useful to the Content Script developer at different
times. A few of the most important ones are:

Online help

The Content Script Module features an online guide that covers the basic language syntax and
functionalities. It also contains quick references to context variables and methods.

Code Snippet Library

When using the Content Script Editor, a library of ready-to-use code snippets is available to
bootstrap new scripts without having to start from scratch. The library includes usage examples
and code templates for many common use cases, and can be easily extended by the developer.

**Groovy reference guide **

The Apache Groovy language is supported by a wide community of adopters worldwide. Groovy
is supported by the Apache Software Foundation: a significant amount of documentation and
examples are available online.

http://www.groovy-lang.org/ (http://www.groovy-lang.org/)

Velocity reference guide

The Apache Velocity engine powers the templating features in Content Script. Velocity is
supported by the Apache Software Foundation: lots of documentation and examples can be
found throughout the web and on the project’s website.

http://velocity.apache.org/ (http://velocity.apache.org/)

Writing and executing scripts

Content Script scripts are "document" class objects stored on Content Server. The primary usage
for a script is its execution. When you "execute" a script, you are basically programmatically
invoking a series of APIs that perform actions over Content Server's or other systems' data. In

def createNewFolder = { String name, def parentNode = docman.getEnterpriseWS() ->
 docman.createFolder(parentNode, "name")
}

def node = createNewFolder(new Date().format("yyyyMMddHHss"))
out << "Calling the createNewFolder with One arguments:${node.ID}
"

def newNode = createNewFolder(new Date().format("yyyyMMddHHss"), node)
out << "Calling the createNewFolder with Two arguments:${newNode.ID}
"

178 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

http://www.groovy-lang.org/
http://www.groovy-lang.org/
http://velocity.apache.org/
http://velocity.apache.org/

the following paragraphs, we are going to analyze all the Content Script architecture's elements
and components that play a role in turning a textual file into an actionable object.

As said, scripts are persisted as "documents" on Content Server. Whenever you execute a script
a component named Script Manager retrieves the script's last version and, either compiles it
(and caches the compiled version) or loads a pre-compiled version of it for execution. Scripts'
execution is managed by another component named Content Script Engine. The Content Script
Engine executes the script's code against the provided execution context (the execution context
is the "container" through which the script's code can access the Content Script's services,
environment variables, support variables, database, etc..). The internals of both the Script
Manager and the Script Engine are not relevant for the purpose of this manual and won't be
discussed.

API Services¶

Content Script API Service¶

Content Script APIs are organized in classes denominated services. Each Content Script API
service acts as a container for a set of homogeneous APIs (API releated to the same kind of
objects or features). Content Script APIs can be extended creating and registering new services
(/working/contentscript/sdk/#create-a-custom-service).

Content Script APIs are, in their most essential form, the methods exposed by the service
classes. In order to be recognize as a Content Script API a service class method must be
decoretad with the @ContentScriptAPIMethod annotation.

Content Script API Objects¶

Content Script APIs return or accept, as parameters, objects representing OTCS objects or
features. In Content Script, these objects are referred to as Content Script API objects. Content
Script API objects are active information containers. We define them active because they expose
APIs designed to manipulate the information stored in themselves.

In order to be recognize as a Content Script API Object a class must be decoretad with the
@ContentScriptAPIObject annotation.

When the script Execution Context is initialized by the Content Script engine, all registered API
services are injected into it. These services allow a Content Script to perform operations on

Content Script API Services Interfaces

When working with Content Script APIs developers program against interfaces. As a matter of fact all Content Script

API services and objects implement one or more interfaces. Implementation classes can be easily distinguished
from their interfaces because their name ends with the "Impl" suffix.

179 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service

Content Server, to use internal utilities (such as PDF manipulation utilities or the templating
service), to access external systems and services, etc.

Here after are some of the main services that are currently available as part of Content Script
APIs.

API Service
Name

Description

Base API

Base API is constituted by methods and properties that are exposed directly
by each script. Some of the most important API are: logging, redirection (used
to redirect users navigation through a server side redirection i.e. http code
302, outputting HTML, XML, JSON and Files)

docman

The docman service is the main access point to the Content Server Document
Management functionalities. With docman service it is possible, among other
things, to: create and manipulate documents and containers, access and
modify meta-data, access and modify object permissions, access volumes,
perform database queries, manipulate renditions and custom views, run
reports, consume OScript request handlers, programmatically import/export
content through Content Server native XML import/export feature

users

The users service is the main collector for all APIs related to Content Server
users and groups. With users service is it possible, among other things, to:
create/modify/delete users and groups, impersonate different users, access
and modify user privileges, perform member searches

workflow

The workflow service allows to programmatically manipulate workflows. With
the workflow service is it possible, among other things, to: start, stop, suspend,
resume, delete workflows, access and manipulate workflow and task data,
accept, complete, reassign workflow tasks, perform searches within workflows
and tasks, change workflows' and steps' title

search

The search service allows to programmatically search over Content Server's
repository. With the search service is it possible, among other things, to: easily
build/execute complex search queries programmatically, easily build/execute
query based on categories attributes, retrieve search result with or without
pagination

collab

The collab service is the main access point to the Content Server collaborative
functionalities. With collab service is it possible, among other things, to: create
and manage projects, tasks and milestones, create and manage discussions,
list and manage users’ assignments

180 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

API Service
Name

Description

mail

The mail service allows to programmatically create/send and receive emails
from scripts. With the mail service is it possible, among other things, to: create
and send email message through multiple mailboxes, scan mailboxes and
retrieve incoming messages and attachments, create email messages (both
html and text messages are supported) with custom templates, send email to
internal users and groups, attach files and Content Server documents to
emails, configure multiple email service profiles to use different IMAP/SMTP
configuration at the same time

template

The template service can come in handy anytime you have to dynamically
create documents. With the template service is it possible, among other
things, to: evaluate documents and plain text strings as templates, replace
place holders and interpret template-expressions

admin

The admin service allows to programmatically perform administrative tasks.
With the admin service is it possible, among other things, to: perform XML
import/export operations, programmatically schedule/unscheduled Content
Script executions

classification

The classification service is the main access point to the Content Server
classification features. With classification service is it possible, among other
things, to: access, apply, remove classifications from objects

pdf

The pdf service allows to programmatically manipulate PDF documents. With
pdf service is it possible, among other things, to: create and manipulate PDF
documents, write in overlay on PDFs, extract PDF pages as images, merge PDFs,
add watermarks to PDF documents, add barcodes (mono and bi-dimensional)
on PDF pages, remove print/modify permissions from PDF, add PDFs in overlay
to existing PDFs, extract images from pages or portion of pages, read bar-
codes form PDF’s pages, remove/insert pages

ftp

The ftp service allows to interact with FTP services. With ftp service it is
possible, among other things, to: access, read, write files and folders on
multiple FTP servers

docx xlsx

The docx/xlsx services allow to programmatically manipulate Microsoft Office
documents. With docx/xlsx services is it possible, among other things, to:
create and manipulate Word, PowerPoint and Excel documents, read and write
documents' properties

forms

The forms service is the main access to the Content Server web-forms
features. With forms service it is possible, among other things, to: create and
modify form and form template objects, read/modify/delete submitted form
records, submit new form records, export/import form records

181 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

API Service
Name

Description

adlib

The adlib service allows to programmatically drive the AdLib rendition engine.
With adlib service it is possible, among other things, to: create jobs for AdLib
PDF Express Engine and fetch renditions results

rend

The rend service allows to programmatically invoke external rendition
engines. With rend service it is possible, among other things, to: transform on
the fly HTML pages to PDF documents, rend WebForms as PDFs, invoke
external services through an "all-purpose" generic rendition api

sap

The sap service allows to integrate Content Script with the well known SAP
ERP through RFCs. With sap service it is possible, among other things, to:
connect to multiple SAP systems through JCO APIs, invoke standard and
custom SAP functions to retrieve/update ERP information

Execution context¶

Upon execution, every Content Script is associated to a Groovy binding. The binding can be seen
as a container for Objects that are part of the context in which the script is executed. We make
reference to this context as Content Script Execution Context or as Script Binding.

The Script Manager creates the most appropriate execution context on the basis of:

the script's code;

the system's current configuration;

the user context (user's permission, user's roles, etc..)

the cause that triggered the script's execution (direct invocation, scheduler, callback, etc..)

APIs evolution

New service APIs are constantly added or updated with every subsequent release of Content Script. Optional APIs
are usually available through Content Script Extension Packages, and can be installed separately using the master
installer or the extension packages’ own installers.

•

•

•

•

182 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

The Script Manager initializes the Script Binding before execution, injecting a set of objects,
which include:

API Services

Request variables

Support Objects

Support Variables

Additionally, a set of script utility methods are available in the Content Script (Base API). The
methods grant access to short-cuts for commonly used features or can pilot the execution
result.

Request variables¶

Request variables are variables injected into the execution context by the Script Manager
whenever a script is directly invoked as a result of a user's browser request.

•

•

•

•

183 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Variable Description

params

A container for the Script’s request parameters. It’s a non-case sensitive map that
provide access to all the parameters passed to the script when executed.
In the params map are injected by default also the following variables (where
available):

myurl:The URL string used to execute the Content Script
node: the id of the Content Script object
useragent: the user's browser useragent
cookies: the user's browser cookies (as strings)
method: the HTTP verb used to request the script
lang: the user's locale
port: the HTTP port used to request the script
server: the HTTP host used to request the script
pathinfo: the request's URL path information

request A synonym for the previous variable (for backward compatibility)

Support variables¶

The number and the nature of the variables that are injected by the Content Script Engine
depends primarily from the mode through which the script has been executed. Content Script
scripts used for example to implement Node Callbacks or columns' Data Sources will have
injected in their Execution Context, respectively: the information regarding the Node that
triggers the event or the Node for which the column’s value is requested. Please refer to the
Content Script module online documentation for the name and type of the variables made
available in the Execution Context in the different scenarios. The following variables are always
injected.

Variable Description

img Content Server static resource context path (es. /img/).

webdav WebDav path

supportpath Content server support path

url Content Server CGI Context

SCRIPT_NAME A synonym for the previous variable (for backward compatibility)

csvars
A map containing the script's static variables (/working/contentscript/
otcsobj/#static-variables)

originalUserId
The ID of the user that triggered the execution of the Script (not considering
impersonation)

•
•
•
•
•
•
•
•
•

184 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables

Variable Description

originalUsername
The username of the user that triggered the execution of the Script (not
considering impersonation)

Support objects¶

Support objects are instances of Content Script classes that the Script Manager creates,
configures and injects into every execution context in order to provide a simple mean for
accessing very basic or commonly required functionalities.

Variable Description

self An object representing the Content Script node being currently executed.

response
An instance of the ScriptResponse class that can be used to pilot the Content Script
output.

gui

A map of standard Content Server UI Components that can be enabled/disabled at
the time of rendering the page.
E.g.

gui.search = false
gui.sideBar = false

IMG

Please note that most of the time the img context variable ends with a trailing slash. To correctly use it as a
replacement variable in Content Script strings or velocity templates we suggest you to use the ${img} notation. E.g.:

""""""

•
•

Disable standard UI

To completely disable the standard Content Server UI use:

gui.gui = false

185 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Variable Description

log

Each Content Script is associated with an instance logger that can be used to keep
track of the script execution. From within a script you can access the logger either
using the Script’s method getLog() or the shortcut log. The Content Script logging
system is based on a framework similar to the one used internally by OTCS. The
logger supports five different levels: trace, debug, info, warn, error. The default log
level for any script is: error this means that log messages at level for example
debug won’t be outputted in the ModuleSuite’s master log file (cs.log).

Logging level can be overridden per script basis through a dedicated administrative
console.

out A container for the script textual output

Base API¶

The Content Script "Base API" or "Script API" is constituted by methods and properties that are
exposed directly by each Content Script script.

API Description

asCSNode(Map)
An alternative to loading a node explicitly using one method out of:
docman.getNode, docman.getNodeByPath, docman.getNodeByNickname

asCSNode(Long)
An alternative to loading a node explicitly using the docman.getNode
method

redirect(String) A shortcut for sending a redirect using the response object

json(String) A shortcut for sending json using the response object

json(Map) A shortcut for sending json using the response object

json(List) A shortcut for sending json using the response object

sendFile(File[,String]) A shortcut for sending a file using the response object

success(String) A shortcut for setting the result of the script execution to "success"

runCS(Long)
A utility method to run a second Content Script (identified by ID)
within the same context

runCS(String)
A utility method to run a second Content Script (identified by
nickname) within the same context

186 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

API Description

runCS(String, Object[])

A utility method to run a second Content Script (identified by
nickname) using a cleaned execution context (the new execution
context shares with the caller’s context only the Content Script
services and the following variables: out, gui, response). In the sub-
script code the parameters that have been used to call the sub-script
can be accessed through the context variable “args”. Using this variant
it’s possible to intercept the result of the sub-script execution.

printError(Ex) A utility method to print out any exception raised by script’s execution

Examples

Usage example for runCS(String, Object[]) API

Usage example for asCSNode(...)API

Usage example for printError(...)API

//Parent Script
node = asCSNode(123456)
map = runCS(“mySubScript”, node, users.current)
out << map.user

//SubScript “mySubScript”
def retVal = [:]
retVal.name = args[0].name
retVal.user = args[1].with{
 [
 name:it.displayName,
 id:it.ID
]
}
return retVal

// Load a CSNode
asCSNode(2000)

// A node can be loaded also by path or nickname
asCSNode(nickname:"MyNode")
asCSNode(path:"path:to:myNode")
asCSNode(id:2000) //=== asCSNode(2000)

try{
 out << asCSNode(12345).name
}catch(e){
 log.error("Error ",e) //Prints the full stack trace in the log file
 printError(e) //Outputs the error

}

187 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Script's execution¶

As shown in previous sections, the execution of Content Scripts can be triggered in different
ways. Here after are a few examples:

Direct execution by a user. This can happen, for example:

Using the Execute action in the object function menu or promoted object functions

While using the Content Script Editor, using the Execute or Execute in Modal
buttons (useful for debug and testing purposes, shown in the figure below)

A URL associated to the execution of a Content Script is invoked

A Content Script backed SmartUI widget is displayed

Direct execution by an external system

A URL associated to a Content Script REST API is invoked

Automatic execution by the system. This happens when:

The script is scheduled, at the configured execution time

A callback is configured, and the associated event is triggered

A Content Script Workflow step is configured as part of a workflow, and the step is
activated

A Content Script is configured as a Data Source for a WebReport, and the
WebReport is executed

A Content Script serves as a Data Source for a custom column

•

◦

◦

◦

◦

•

◦

•

◦

◦

◦

◦

◦

188 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Script's output¶

As you can easily imagine by analysing the examples in the previous paragraph, the expected
result from the execution of a Content Script varies significantly from case to case.

When a user executes a Content Script directly from the Content Server user interface, he/she
would probably expect, in most of the cases, the result to be either a web page, a file to
download, or a browser redirection to a different Content Server resource.

When a remote system invokes a REST service API backed by a Content Script, it will most
probably expect structured data in return (probably XML or JSON data).

When a Content Script is executed as part of a workflow and the next step is to be chosen
depending on the execution outcome, the script will probably be expected to return a single
variable of some kind (a number or a string) or an indication that the execution was either
successful or encountered errors.

Content Script is flexible enough to cover all of these scenarios. The next section will include
examples of how to provide the different output necessary in each situation.

HTML (default)¶

The default behaviour in case of a successful script execution is to return the content of the
"out" container

JSON¶

JSON content can be easily returned

def contentToPrint = "This content will be printed in output"
out << contentToPrint

def contentToPrint = "This content will be printed in output"

//If the object returned by the script is a String, it will be printed in output
return contentToPrint

def builder = new JsonBuilder()
builder.companies {
 company "AnswerModules"
 country "Switzerland"
 }

// Stream JSON content, useful for restful services
response.json(builder)

189 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

XML¶

XML content can be easily returned

Output of the above script:

Files¶

It is also possible to stream a file directly:

String jsonString = '{"key":"value"}'

// A string containing JSON data can be used
response.json(jsonString)

// or with the shorthand method
json(jsonString)
// or
json([[key:”value1”], [key:”value2”]])

gui.gui = false
gui.contentType = "application/xml"

def builder = new StreamingMarkupBuilder()
def parent = asCSNode(2000)
def nodes = parent.childrenFast //nodes are lazy loaded

def xml = builder.bind {
 node(id:parent.ID, name:parent.name, isContainer:parent.isContainer){
 children {
 nodes.collect {
 node(id:it.ID, name:it.name, isContainer:it.isContainer)
 }
 }
 }
}
out << XmlUtil.serialize(xml)

<node id="2000" name="Enterprise" isContainer="true">
 <children>
 <node id="90064" name="Import" isContainer="true"/>
 <node id="3270165" name="Training" isContainer="true"/>
 </children>
</node>

Using gui support object for tuning script's output

Note the usage of gui.contentType in order to change the response’s “Content-Type” header.

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"

190 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Managed resources¶

In the context of developing against OTCS you will end up dealing with many different kind of
contents most of which are (or are strictly related with) files. In order to reduce the amount of
code needed to properly manage the disposition of temporary files, Content Script introduces
the concept of "managed resource" or CSResource. A CSResource is basically a wrapper around
the File class. CSResources are managed by the Content Script engine (no disposition required)
and are returned any time you want to access the content of a CSDocument or you fetch a
version from it (in these cases the CSResource will keep a reference, towards the source
CSDocument, through its "owner" property.

CSResources are first class citizens in Content Script. A CSResrouce can be for example returned
directly by a Content Script, triggering the download of the same.

def file = res.content
response.file(file)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"
def file = res.content
// Stream a file, specifying if it is a temporary file (will prevent deletion)
response.file(file, true)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"
def file = res.content
// or with the shortcut method
sendFile(file)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"

// or returing the CSResource directly
res.name = "My textFile.txt"
return res

Returning CSResource to trigger document download

Returning a CSResource from a script is the simplest way to stream out a file in this case is important to keep in
mind that the name of the downloaded file will be determined using the following rule:

if the property onwer of the CSResource is != null
then
 use the name of the CSNode referenced by the CSResource’s owner property
else
 use the CSResource's name property.
end

191 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Redirection¶

In alternative, the response could contain a redirection to an arbitrary URL:

HTTP Code¶

In certain cases (e.g. when Content Script is used to extend OTCS’ REST APIs), it could be
necessary to explicitly control the "error" or "success" status of the script execution:

Advanced programming¶

Templating¶

Content Script features a flexible yet powerful templating engine based on Apache Velocity.
Evaluating a template is just a matter of invoking one of the evaluate methods available
through the template service.

Content Script velocity macros¶

Content Scripts defines a collection of macros that simplify the creation of OTCS UI embeddable
interfaces. A developer can create his own macros simply defining them in a z_custom.vm file to
be stored under the Content Script "Temp" folder (as defined in the Base Configuration page:
amcs.core.tempFilePath).

String url = "http://www.answermodules.com"

// Send a redirect using the response
response.redirect(url)

// or with the shortcut method
redirect(url)
// or
redirect “${url}/open/2000”
// or
redirect asCSNode(2000).menu.open.url

// Force the script execution result to be "success" using the response
response.success("This is a success message")
response.success("This is a success message",200)

// or with the shortcut method
success("This is a success message")
success("This is a success message",200)

// Force the script execution result to be "success"
response.error("This is an error message", 403)

// or with the shortcut method
error("This is an error message", 403)

192 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Name and description Param
Type and
description

Usage example

csmenu(dataid[,nextUrl])
Creates the standard OTCS
context menu for the given node
(identified by its dataid)

dataid
Integer
node's dataid

#csmenu(2000)

nextUrl String

csresource(retList)
Loads static libraries from the
module support directory

resList

List
A list of
resources to
load. To be
chosen from:
query, jquery-
ui, jquery-ui-
css, bootstrap,
bootstrap-css

#csresource([‘bootstrap’])

csform(script[,submit])
Creates the HTML form needed
to submit a request against the
executed Content Script

script

Integer
The objId of
the Content
Script you’d
like to execute

#@csform()

//Custom form inputs go

here

#end

submit

String
The value for
the label of
the submit
button. If null
the submit
button will
not be created

cstable(columns,sortColumn,
columnsClasses[,checkBoxes])
Creates an HTML table that fits
nicely with the standard OTCS UI

columns
List
The list of
column labels

#@cstable([‘First Name’],

{},{}, true)

//Your rows here

#end

sortColumns

Map
A map of
“Column
Label”,
“Property”
couples. The
Property is
used to build
sort links for
columns

193 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Name and description Param
Type and
description

Usage example

columnsClasses

Map
A map of
“Column
Label”, “CSS
Classes”
couples. The
“CSS Classes”
are assigned
to the THs
tags.

checkBoxes

Boolean
If TRUE the
first column of
the table will
have width
1%. To be
used to insert
a checkboxes
column

cspager(skip,pageSize,
pagerSize,elementsCount)
Creates a pagination widget to
be used

skip

Integer
The index of
the element
to skip before
to start
rendering
rows

#cspager(0 25 3

$parent.childCount)

pageSize
Integer
The page size
(e.g. 25)

pagerSize

Integer
The number
of pages to
show in the
pager widget

elementsCount

Integer
The total
number of
elements

194 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

OScript serialized data structures¶

Content Script Java layer is tightly bound with Content Script Oscript layer, thus quite frequently
you will face the need of managing Oscript's serialized data structures obtained for example
querying the OTCS' database or from nodes' properties.

Oscript serializes its data in the form of Strings, for this reason Content Script enhances the
String class in order to provide a quick method for retrieving the corresponding Content Script’s
objects out of the OScript serialized representation.

Methods available on the String class are:

getDateFromOscript

getListFromOscript

getMapFromOscript

In the exact same way Content Script enhances its most common types (List, Map, Date, Long,
CSReportResult) in order to simplify the creation of the corresponding OScript serialized
representation.

The below table shows an usage example of the mentioned features:

Optimizing your scripts¶

Behaviors¶

You can use behaviors to decorate your scripts and let them implement a specific set of new
functionalities. Behaviors are to be considered similar to inheritance. A behavior is defined as a
collection (MAP) of closures and usually implemented in the form of a static class featuring a
getBehaviors method.

When you add a behavior to your script, all the closures that have been defined in the behavior
become part of your script thus becoming part of your script context.

•

•

•

195 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Behaviors are resolved at compilation time, this means that they should be considered as a
static import.

Said otherwise, any changes applied directly on the script that implements your behaviors,
won't effect the scripts that have imported such behaviors. In order to update the imported
behaviors you have to trigger the re-compilation of the script that is importing them (target
script).

BehaviorHelper¶

In order to add behaviors to a script you shall use the BehaviourHelper utility class.

The BehaviourHelper utility class, features three methods:

Through BehaviourHelper you can add, remove or check for the presence of an associated
behavior.

Behaviors are of great help when it comes to structure your code base, optimize executions and
reduce boilerplate code.

Module Suite comes with few predefined behaviors, you can easily implement yours by defining
a map of closures to be passed to the above BehaviourHelper utility class.

Default Behaviours¶

The AMController behavior has been designed to simplify the creation of form-based
application on Content Server.

It features the following closures:

start: this closure takes no parameters, and it is used to dispatch incoming requests. It
creates (if not already provided) an app object to be made available in the execution
context. It analyzes the request's pathinfo, to extract the information required to route
towards a registered closure. Rebuilds any Beautiful WebForm object found in the
request.

This closure should be the last instruction of your script.

@ContentScriptAPIMethod (params = ["script" , "behaviours"], description = "Add behaviours to a Content Script"
public static void addBeahaviours(ContentScript script, Map<String, Closure> closures)

@ContentScriptAPIMethod (params = ["script" , "behaviours"], description= "Remove behaviours from a Content Script
public static void removeBehaviours(ContentScript script, String... closures=null)

@ContentScriptAPIMethod (params = ["script" , " behaviour "], description= " Determine if the script already has t
public static void hasBehaviour(ContentScript script, String name)

1.

app = [:]
app.product ="Module Suite"

196 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

When directly executed (http://my.server/otcs/cs.exe?
func=ll&objId=12345&objAction=Execute&nexturl=.. or http://my.server/otcs/cs.exe/open/12345) the
script above will output:

Hello world from Module Suite

when executed using: http://my.server/otcs/cs.exe/open/12345/details it will output

The script ID 12345

when executed as: http://my.server/otcs/cs.exe/open/12345/details/2000 it wll output:

The script ID 2000

In other words the requested path will always been interpreted using the follow schema:
http://my.server/otcs/cs.exe/open/12345/closurename/param1/param2/param3 where closurename
will be defaulted to "home" if not found in the path.

loadForm(def formID, def amSeq=0): loads a Form data object, setting
form.viewParams.contentScript = params.node (so that if the form data object will be
used with a BeautifulWebForm view the form will submit on this very same content script)
and form.viewParams.amapp_Action = params.pathinfo.

submitForm(def form): validates the form data object and performs the submit
(executing pre-submit and on-submit scripts if defined)

renderForm(def form, def context=null): renders the form either in the script context or
in the specified context

if(!BehaviourHelper.hasBehaviour(this, "start")) {
 BehaviourHelper.addBeahaviours(this, AMController.getBehaviours())
}

home = {
 out << "Hello world from ${app.product}"
}

details = { String id = null->
 out << "This script ID ${id?asCSNode(id as int).ID:self.ID}"
}
start()

2.

3.

4.

197 Writing and executing scripts

Copyright © 2013-2020 AnswerModules Sagl

Working with workflows

Content Script Workflow Steps¶

The Content Script Extension for Workflows is automatically available upon installation of the
Content Script module. The extension enables a new workflow package in Workflow maps
(Content Script package) and custom type of workflow step (Content Script step).

Content Script Package¶

The Content Script package must be enabled in order to use Content Script steps within a
workflow map.

Once enabled, it will be possible to define the set of Content Script objects that will be
available for inclusion in the current workflow map.

Content Script Workflow Step¶

Content Scripts enabled in the workflow package can be used in the workflow map as Content
Script steps.

198 Working with workflows

Copyright © 2013-2020 AnswerModules Sagl

Here below is an example of a Content Script step performing some basic operations on the
current workflow task.

// Fetch the menu in its original format
def workflowStatus = workflow.getWorkflowStatus(workID, subWorkID)
def workflowTask = workflow.getWorkFlowTask(workID, subWorkID, taskID)
def allTasks = workflowStatus.tasks

// Edit Workflow Attribute values
def workflowAttributes = workflowStatus.getAttributes()
workflowAttributes.setAttributeValues("Customer", "ACME inc.")
workflowAttributes.setAttributeValues("Country", "Switzerland")
workflow.updateWorkflowData(workID, subWorkID, [workflowAttributes]) //Updates attributes

// Edit Workflow Attribute values - different flavour
try{

 def atts =workflowStatus.getAttributes()

 // This API is not just for reading values...
 // Set the value
 atts.data.Customer = "ACME inc."
 atts.data.Country = "Switzerland"

 workflowStatus.updateData() // COMMIT CHANGES

}catch(e){
 log.error("Unable to access workflow's attributes ",e)
}

// Access a workflow form
def form = forms.getWorkFlowForm(workflowTask, "Form")
form.myattribute.value = "A new value"
forms.updateWorkFlowForm(workflowTask, "Form", form, false)

// Update Task's title
workflow.updateTaskTitle(
 workID,
 subWorkID,
 taskID,
 "Title with form field: ${form.myattribute.value}"
)

// Access a workflow form and workflow attributes - different flavour

199 Working with workflows

Copyright © 2013-2020 AnswerModules Sagl

In the above example, the script is:

fetching information related to the current workflows status and tasks

performing changes on some workflow attributes

fetching and updating a workflow form

adding attachments to the workflow attachments folder

Note that the above script makes use of some context variable available in the execution
context that are peculiar only to workflow steps. The variables are:

Expression type Type Description

workID Integer The workflow ID

subWorkID Integer The subworkflow ID

taskID Integer The current task ID

The above variables can be used in combination with the workflow service API to access all the
information related to the current workflow. See the complete API documentation for a
complete list of operations available on workflow instances.

Workflow routing¶

Content Script execution outcome can be interpreted in different ways, and used to route the
next steps of the workflow.

//Mapping
node = asCSNode(path:"Some Path:On Content Server:Node")

workflowStatus.attributes."Account Folder" = node.ID
workflowStatus.forms.Form.data."Lead Owner" = node.Account."Account Manager"
workflowStatus.forms.Form.data."Company" = node.Account."Company name"
workflowStatus.forms.Form.data."First Name" = node.Account."Contacts"."First Name"
workflowStatus.forms.Form.data."Last Name" = node.Account."Contacts"."Last Name"
workflowStatus.forms.Form.data."Email" = node.Account."Contacts"."Email"
workflowStatus.forms.Form.data."Addresses"."Street" = node.Account."Addresses"."Street"
workflowStatus.forms.Form.data."Addresses"."City" = node.Account."Addresses"."City"
workflowStatus.forms.Form.data."Addresses"."Zip Code" = node.Account."Addresses"."ZipCode"
workflowStatus.forms.Form.data."Addresses"."Country" = node.Account."Addresses"."Country"
workflowStatus.updateData() // COMMIT CHANGES

// Updating Workflow title
workflow.updateWorkFlowTitle(
 workID,
 subWorkID,
 "Company: ${workflowStatus.forms.Form.data."Company" as String}"
)

// Add documents to the attachments folder (an empty spreadsheet in this case)
def workflowAttachments = workflowStatus.getAttachmentsFolder()
workflowAttachments.createDocument("Spreadsheet", xlsx.createSpreadsheet().save())

•

•

•

•

200 Working with workflows

Copyright © 2013-2020 AnswerModules Sagl

The following routing expression types are currently supported:

Expression type Values Description

Content Script Outcome
Success or
Error

Error in case the script returns an exception

Content Script Outcome
(Integer)

Any Integer
value

Supports evaluation based on numeric
comparison

Content Script Outcome
(String)

Any String
value

Evaluation based on string comparison

201 Working with workflows

Copyright © 2013-2020 AnswerModules Sagl

Managing events (callbacks)

Synchronous and Asynchronous callbacks¶

Since version 1.5, Content Script supports the definition of Event Callbacks: in response to
specific actions performed on Content Server, it is possible to execute one or more Content
Scripts.

The callbacks can be:

synchronous: the script is executed within the same transaction as the triggering action.
Synchronous callbacks are configured through the CSSynchEvents container.

asynchronous: the triggering action completes normally. The callback script is executed
later on. Asynchronous callbacks are configured in the CSEvents container.

The definition of Content Script callbacks is based on a convention over configuration approach.
In order to register a new callback, a script should be placed somewhere in a nested container
structure in the CSSynchEvents or CSEvents container, following a specific naming convention.

The first level under the container indicates the object or object subtype to which the callbacks
are bound.

The naming convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

•

•

Since synchronous callbacks are performed in the same transaction as the event, any errors that occur during script
execution will cause the transaction to roll back.

Performance

Since synchronous callbacks are executed in the same transaction as the event, make sure that any action
performed by the script requires a reasonable time span for execution. Otherwise, the user experience could be
affected negatively.

•

•

202 Managing events (callbacks)

Copyright © 2013-2020 AnswerModules Sagl

Examples:

D2000 will intercept events on the Enterprise Workspace

S144 will intercept event on Document type objects (subtype: 144)

The second level should be once again a container and specifies the event type. The name of
this container should be one of:

ChildNodeAdded

ChildNodeCreate

NodeAddVersion

NodeAddVersionPre

NodeCopy

NodeCreate

NodeCreatePre

NodeMove

NodeRename

NodeUpdate

NodeUpdateCategories

Inside the Event Type container it is possible to place one or more Content Scripts that will be
invoked when the callback is triggered.

•

•

•

•

•

•

•

•

•

•

•

203 Managing events (callbacks)

Copyright © 2013-2020 AnswerModules Sagl

In the following tables we present a summary of the supported Events and the information
regarding the variables that are injected in the Execution Context, automatically by the
framework, for each event. These variables can be useful to implement the required business
logic within the Script.

InterruptCallbackException - transaction roll-backed¶

There are cases in which you might want your synchronous callback to cause the roll-back of
the original event transaction (to prevent its completion), e.g. you implemented a synch-
callback triggered by the NodeCreate event and you want to use it to ensure that the node that
is going to be created respects some specific business rule, for example, it's a PDF document. In
this cases, you can just raise an un-catched InterruptCallback exception from within your
callback script.

The Module Suite Administration pages feature a Manage Callbacks (/administration/modulesuite/#manage-
callbacks) tool that can be used to verify, at any time, all the callbacks that are bound to a specific object or

subtype.

Event Name	Execution Context Param	Type	Description
All	callbackID	String	The CSEvent Name (NodeAddVersion, NodeUpdateC
	eventSourceID	Integer	The dataid of the node that triggered the eve
NodeAddVersion	nodeID	Integer	The document that has received the new versio
NodeAddVersionPre	nodeID	Integer	The document that has received the new versio
NodeUpdateCategories	nodeID	Integer	The updated node’s id
	addedCategories	List<String>	The list of added categories
	deletedCategories	List<String>	The list of removed categories
	changes	ChangeAssoc	The list of applied attributes changes.
NodeCopy	nodeID	Integer	The id of the node that has been copied
	newNodeID	Integer	The newly created node’s id
ChildNodeAdded	nodeID	Integer	The id of the node where a new content has be
	newNodeID	Integer	The newly created node’s id
NodeCreate	newNodeID	Integer	The newly created node’s id
NodeCreatePre	newNodeID	Integer	The newly created node’s id
ChildNodeCreate	nodeID	Integer	The id of the node where a new content has be
	newNodeID	Integer	The newly created node’s id
NodeMove	nodeID	Integer	The moved node’s id
NodeRename	nodeID	Integer	The renamed node’s id
	oldName*Can be null*	String	The previous node’s name
	newName	String	The current node’s name
NodeUpdate	nodeID	Integer	The updated node’s id

The following table is related to the structure of the **ChangeAssoc**
object, necessary to manage **NodeUpdateCategories** type events.

Property name	Type	Description
attributePath	List	The path of the modified attribute inside the category.
 {“Name”,0}: represents the path to the first value of the attribute “Name”
 {“Name”,1}: represents the path to the second value of the attribute “Name”
 {“Addresses”, 2, “ZipCode”, 0}: represents the path to the first value of the attribute Z
 occurrence of the Set attribute Addresses
| oldValue | Dynamic | The previous attribute’s value
| newValue | Dynamic | The present attribute’s value
| categoryName | String | The category name

204 Managing events (callbacks)

Copyright © 2013-2020 AnswerModules Sagl

/administration/modulesuite/#manage-callbacks
/administration/modulesuite/#manage-callbacks
/administration/modulesuite/#manage-callbacks
/administration/modulesuite/#manage-callbacks

E.g.

Extending REST APIs

Extending REST APIs:CSServices¶

The CSServices container is dedicated to Content Scripts that should be made available as REST
services.

The name of scripts placed in this container can be used to invoke the script directly through
two dedicated HTTP endpoint (amcsapi, amcsapi/v1)

The amcsapi can be used to consume the REST service from within the Content Server GUI (it
will in fact use the standard Content Server authentication mechanism to authenticate the
user).

On the other hand the amcsapi/v1 can be used to consume the REST service using the Content
Server REST Apis authentication token (https://developer.opentext.com/webaccess/
#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501)

Basic REST service¶

As a very simple example, the script getuserbyname can be invoked by using an URL built as
follows:

http://localhost/otcs/cs.exe/amcsapi/getuserbyname

http://localhost/otcs/cs.exe/amcsapi/v1/getuserbyname

Additional parameters can be passed to the service, and will be available in the Content Script
(via the params object). For example, invoking the previous script as:

log.error("Running ${self.parent.parent.name}:${self.parent.name}:${self.name} for $nodeID")
out << "This is the mother of all failures..."
throw new InterruptCallbackException("New Callback Exception...")

Returning meaningful messages to your users

To return a message to your users you have just to add an output statement to your script.

When invoked, unless otherwise specified (for example, in the script’s “Run As” configuration), each script is
executed as the currently logged in user.

205 Extending REST APIs

Copyright © 2013-2020 AnswerModules Sagl

https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501

http://localhost/otcs/cs.exe/amcsapi/getuserbyname?term=admin

the REST service framework will run the backing getuserbyname script adding the value of the
GET parameter term in the params container variable. In the script, the value will be accessible
by simply using the expression:

Behaviour based REST services¶

Since version 1.7.0, Content Script supports a “behaviour” based approach for the creation of
REST services. This allows for an easier set-up of new services, enhance maintainability and
better compliance with REST service commonly used conventions and de-facto standards.

A skeleton for a behaviour-based REST service is shown below.

A REST service can specify multiple operations, identified with behaviours. Each behaviour is
implemented as a closure. By convention, the home behaviour is bound to the root of the API.

Service example¶

params.term

log.debug("Content Script REST Service {} - START", self?.name)

section = { String elemID=null, String method=null, String param=null ->
 try {
 if(elemID){
 switch(params.method){
 case "GET": //Read
 json(
 [
 operation:"section",
 elemID:elemID,
 method: method,
 param: param
]
)
 return;
 default :
 response.error("Unsupported operation",500)
 return
 }
 }else{
 json(
 [
 operation:"section",
 elemID:elemID,
 method: method,
 param: param
]
)
 return
 }
 } catch(e){
 log.error("An error has occurred while managing the request", e)
 json([error:"Unable to complete your request $e?.message"])
 }
}

206 Extending REST APIs

Copyright © 2013-2020 AnswerModules Sagl

Sample invocation path Operation Parameters passed to the closure

/training home elemID = null

/training/2000 home elemID = “2000”

/training/2000/section section
elemID = “2000”
method = null
param =null

//Default service method
home = { String elemID ->
 try {
 //Single element
 if(elemID){
 switch(params.method){ //request verb
 // CRUD operations
 case "POST": //Create
 //Your code here...
 break;
 case "GET": //Read
 json(["elemID":elemID])
 return;
 case "PUT": //Update
 //Your code here...
 break;
 case "DELETE": //Delete
 //Your code here...
 break;
 }
 }else{
 switch(params.method){ //request verb
 // CRUD operations
 case "POST": //Create
 //Your code here...
 break;
 case "GET": //Read
 //Your code here...
 break;
 case "PUT": //Update
 //Your code here...
 break;
 case "DELETE": //Delete
 //Your code here...
 break;
 }
 }
 // Default return
 json([ok:true])
 } catch(e){
 log.error("An error has occurred while managing the request", e)
 json([error:"Unable to complete your request $e?.message"])
 }
}

if(!BehaviourHelper.hasBehaviour(this, "start")) {
 BehaviourHelper.addBeahaviours(this, AMRestController.getBehaviours())
}

return start()

log.debug("Content Script REST Service {} - END", self?.name)

207 Extending REST APIs

Copyright © 2013-2020 AnswerModules Sagl

Sample invocation path Operation Parameters passed to the closure

/training/2000/section/100 section
elemID = “2000”
method = “100”
param =null

/training/2000/section/100/list section
elemID = “2000”
method = “100”
param =“list”

/training/section/2000 section
elemID = “2000”
method = null
param =null

/training/section/2000/100 section
elemID = “2000”
method = “100”
param =null

/training/section/2000/100/list section
elemID = “2000”
method = “100”
param =“list”

Extending Content Script

Create a Custom Service¶

One of the most important feature of ModuleSuite is its extensibility. ModuleSuite has been in
fact designed in order to let you extend it, creating new services, new components, widgets,
code snippets etc..

Creating a new service it's particularly helpful when it comes to integrate other services and/or
systems, or to leverage existing libraries to extend the Content Server capabilities. Creating your
extension in the form of a new Content Script service you will automatically benefit from all the
existing ModuleSuite features such as, for example, the full support of the Content Script Editor.

New services can be easily created by using the Content Script SDK. The Content Script SDK is a
toolkit that can be used by developers to create custom Content Script services. Services
created with the SDK can be seamlessly deployed in the target Content Server instance, and be
accessible within Content Script code.

The suggested way to setup and use the Content Script SDK is by using the well-known Eclipse
IDE.

208 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

The SDK is shipped in the form of an Eclipse Maven project. The project includes all the
interfaces required for integration within Content Script, and can be used as a template to
create a custom service.

Content Script SDK setup¶

Download Eclipse Luna SR2 (https://eclipse.org/downloads/packages/eclipse-ide-java-
developers/lunasr2c (https://eclipse.org/downloads/packages/eclipse-ide-java-
developers/lunasr2c)*) *

Run Eclipse. Use the Help > Install new software option to install some required
additional components

Install Maven2Eclipse components

add the update site (http://download.eclipse.org/technology/m2e/releases/
(http://download.eclipse.org/technology/m2e/releases/))

install the components: m2e - Maven integration for Eclipse, m2e - slfj over
logback logging (Optional)

1.

2.

3.

1.

2.

209 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

In your workspace folder, unpack the contents of the Content Script SDK archive

Import the unpacked project within your new Eclipse environment.

4.

5.

210 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

211 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

Navigate to the workspace folder and select the project directory, the project is identified
by its pom.xml (Project Object Model) file. The Content Script SDK pom should appear in
the listing.

Once selected, proceed with import.

Review the imported SDK project layout6.

212 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

213 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

Build the project using the Maven menu options.

Deploy the newly created service on your Content Server instance. The main artifact
produced by a project build is a jar file containing the service classes. In order to install
the custom services to the target OTCS instance, copy the jar file to: <OTCS_Home>/
module/anscontentscript_X_Y_Z/amlib

7.

8.

214 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

Each service might load as many dependencies as it needs, service’s dependencies are
loaded with an high isolation level, thus several services might load the same
dependency (same library) or even load different version of the same dependency
(different version of the same library). Service’s dependencies are loaded by default from
a folder stored under /module/anscontentscript_X_Y_Z/amlib having the same name as
the service identifier. Service’s dependencies can be specified using the POM file you can
find in the SDK project. E.g.

Upon build, an additional target folder will include all direct and indirect dependencies
needed at runtime:

<dependency>
 <groupId>berkeleydb</groupId>
 <artifactId>berkeleydb</artifactId>
 <version>1.5.1</version>
</dependency>

215 Extending Content Script

Copyright © 2013-2020 AnswerModules Sagl

content-script-services.xml – Service description file¶

In order to let ModuleSuite be aware of your new service you have to properly describe it using
the content-script-service.xml file. This xml files allows you not just to describe your service but
also to provide some basic configuration for it.

The base structure of the file is as follows:

Using a single Content Scrip SDK project you can define as many services as you want. Each
service should have its own service element descriptor in the description file. The mandatory
attributes for the service element are: the service unique identifier (id) and the service
implementation class (class). The extRepoId attribute is used if multiple services are defined in
the same description file in order to inform ModuleSuite from where services’ dependencies
shall be loaded (in the above example both the services are loading their own dependencies
from the same repository).

Content Script Extension for SAP¶

Using the extension¶

This section describes how to use the SAP API to retrieve data from the SAP system. The main
Script API Object you are going to use is the SAPFunction object, which can be obtained from
the sap service by calling sap.getFunction Script API Method. The SAPFunction object works the
same for either an existing xECM connection or for a custom connection.

<?xml version="1.0" encoding="UTF-8" ?>
<services>
 <service id="sample" extRepoId="sample" class="com.answer.modules.sample.SampleService">
 <properties>
 <property name="sample.aProperty"
 description="A property with a default value (default: 'default')">default</property>
 <property name="sample.aSecret" type="hidden"
 description="A property with a hidden value"></property>
 <property name="sample.aNumber"
 description="A property with a numeric value (default: 1)">1</property>
 </properties>
 </service>
 <service id="anotherSample" extRepoId="sample" class="com.answer.modules.sample.ASampleService">
 <properties>
 <property name="sample.aProperty"
 description="A property with a default value (default: 'default')">default</property>
 <property name="sample.aSecret" type="hidden"
 description="A property with a hidden value"></property>
 <property name="sample.aNumber"
 description="A property with a numeric value (default: 1)">1</property>
 </properties>
 </service>
 </services>

216 Content Script Extension for SAP¶

Copyright © 2013-2020 AnswerModules Sagl

Function's input parameters can be specified using the setImpParam method:

To invoke a function in the target system and retrieve the function's result just call the execute
method of the SAPFunction object:

Function execution results¶

The extension package features several options that help you in properly manage a function's
execution result:

Function export parameter is in Table form Get content of table parameter of function
execution result, i.e. as SapTable Script API Object. See sample code below

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")
sapfunc.setImpParam("EMPLOYEENUMBER", cid)
sapfunc.setImpParam("DEDUCTBEGIN", now)
sapfunc.setImpParam("DEDUCTEND", now)

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")
sapfunc.setImpParam("EMPLOYEENUMBER", cid)
sapfunc.setImpParam("DEDUCTBEGIN", now)
sapfunc.setImpParam("DEDUCTEND", now)
sapfunc.execute()

1.

//result as SAPTable class
def sapTblQuote = sapfunct.table("ABSENCEQUOTARETURNTABLE",
 "QUOTATYPE",
 "QUOTATEXT",
 "DEDUCTBEGIN",
 "DEDUCTEND",
 "ENTITLE",
 "DEDUCT",
 "ORDERED",
 "REST",
 "REST_FREE",
 "TIMEUNIT_TEXT")

def quote = sapTblQuote.rows.collect{
 [
 "quotaType":it.QUOTATYPE,
 "quotaText":it.QUOTATEXT,
 "begin":it.DEDUCTBEGIN,
 "end":it.DEDUCTEND,
 "entitle":it.ENTITLE,
 "deduct":it.DEDUCT+it.ORDERED,
 "rest":it.REST_FREE
]}

217 Content Script Extension for SAP¶

Copyright © 2013-2020 AnswerModules Sagl

Please refer to SAPTable Script API Object for more detailed description of available methods
and options.

Function export parameter is in Structure form Get content of a structure export
parameter as a SapStructure Script API Object. See sample code below

Please refer to SapStructure class API for more detailed description of available methods and
options.

Get generic value of export parameter To get value of function export parameter you can
use gertExportParam() method. Please see sample code below:

All necessary conversions between Java and ABAP data types are done automatically.

Sample code listing below contains sample usage scenarios of SAP integration extension:

1.

def cumulateSAPStctr = sapfunct.table("CUMULATEDVALUES",
 "QUOTATYPE",
 "QUOTATEXT",
 "ENTITLE",
 "DEDUCT",
 "ORDERED",
 "REST",
 "REST_FREE",
 "TIMEUNIT_TEXT")
//optionally you can call cumulateSAPStctr.getRows("QUOTATYPE","QUOTATEXT",...).collect()
def cumulate = cumulateSAPStctr.rows.collect{
 [
 "quotaType":it.QUOTATYPE,
 "quotaText":it.QUOTATEXT,
 "entitle":it.ENTITLE,
 "deduct":it.DEDUCT+it.ORDERED,
 "rest":it.REST_FREE
]}

1.

def empldet = sap.getFunction("Z_HR_MSD_RFC01_AD_EMPL_SINGLE", "PRD")
 .setImpParam("I_PERNR", cid).execute()
 .getExportParam("E_AD_EMPL")

 // BAPI Function
getSAPHRData = {
 cid ->
 def now = new Date()
 def sapfunct = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")
 .setImpParam("EMPLOYEENUMBER", cid)
 .setImpParam("DEDUCTBEGIN", now)
 .setImpParam("DEDUCTEND", now)
 .execute()
 def quote = sapfunct.table("ABSENCEQUOTARETURNTABLE",
 "QUOTATYPE",
 "QUOTATEXT",
 "DEDUCTBEGIN",
 "DEDUCTEND",
 "ENTITLE",
 "DEDUCT",
 "ORDERED",
 "REST",

218 Content Script Extension for SAP¶

Copyright © 2013-2020 AnswerModules Sagl

SAP service APIs¶
Method Summary

SapFunction
getFunction(String functionName, String destinationName)
Get a SAP function for the specified destination

SapFunction
getFunction(String functionName)
Get a SAP function for the default destination ('default')

API Objects¶

SapField¶

 "REST_FREE",
 "TIMEUNIT_TEXT").rows.collect{
 ["quotaType":it.QUOTATYPE, "quotaText":it.QUOTATEXT, "begin":it.DEDUCTBEGIN, "end":it.DEDUCTEND
 }
 def cumulate = sapfunct.table("CUMULATEDVALUES",
 "QUOTATYPE",
 "QUOTATEXT",
 "ENTITLE",
 "DEDUCT",
 "ORDERED",
 "REST",
 "REST_FREE",
 "TIMEUNIT_TEXT").rows.collect{
 ["quotaType":it.QUOTATYPE, "quotaText":it.QUOTATEXT, "entitle":it.ENTITLE, "deduct":it.DEDUCT
 }
 return ["quote":quote, "cumulate":cumulate]
}

quotaMap = getSAPHRData(cid)

out << template.evaluateTemplate("""

<div>
 #@cstable(['Quote', 'Begin', 'End', 'Entitle','Deduction', 'Rest'] { '':'' } { '':'' })
 #foreach(\$row in \$quotaMap.quote)
 <tr>
 <td>\$row.quotaText</td>
 <td>\$date.format('dd.MM.yyyy', \$row.begin)</td>
 <td>\$date.format('dd.MM.yyyy', \$row.end)</td>
 <td>\$row.entitle</td>
 <td>\$row.deduct</td>
 <td>\$row.rest</td>
 </tr>
 #end
 #end
</div>

"""
)

219 Content Script Extension for SAP¶

Copyright © 2013-2020 AnswerModules Sagl

Method Summary

SapField
setValue(Object value)
Set the field value

Field Summary

Object
value
Get the field value

Extension: Classic UI

Customize an object's functions menu: CSMenu¶

Content Script can be used to perform changes to the standard object function menus, by
adding new options or removing existing ones. This feature is enabled by defining a Content
Script that “filters” the object menu and performs the desired modifications. The “amgui”
service provides a user-friendly interface to perform modifications to the menu object.

As for most other features configured through the Content Script Volume, a convention-over-
configuration approach has been adopted.

The target container in which to place the Content Scripts is CSMenu. The first level under this
container identifies the objects to which the customizations are applied. The naming
convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

•

•

220 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

Examples:

D2000 will change the function menu of the Enterprise Workspace

S144 will change the function menu of Document type objects (subtype: 144)

The following example shows a menu customization script that includes:

fetching the original menu

filtering the original menu entries (removing entries that match a specific expression)

adding a divider row to split menu entries

adding a submenu

adding a custom menu entry to the new submenu

returning the modified menu

E.g.

•

•

•

•

•

•

def csMenu = amgui.getCSMenu() //retrive the current object's menu
try{
 def node = docman.getNodeFast(nodeID)
 /**

221 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

Property Type Description

name String Label of the menu entry (only for menu items and submenus)

openInNewTab Boolean If true opens a new target browser window (only for menu items)

position String
The order of the entry in the menu (available for menu items,
submenus and dividers)

url String The target URL (only for menu items)

Customize a space's add-items menu: CSAddItems¶

Content Script can be used to perform changes to a container’s Add Item menu, by adding new
options or removing existing ones. This feature is enabled by defining a Content Script that
“filters” the menu and performs the desired modifications. The “amgui” service provides a user-
friendly interface to perform modifications to the menu object.

As for most other features configured through the Content Script Volume, a convention-over-
configuration approach has been adopted.

The target container in which to place the Content Scripts is CSAddItems. The first level under
this container identifies the objects to which the customizations are applied. The naming
convention is one of the following:

D<nodeID>

 A filter is a closure that returns true if the menu item shall be kept, false otherwise.
 In the filter function scope the object "it" represent the menu item.
 A menu item has the following properties:
 - name (string)
 - url (string)
 - openInNewTab (boolean) *available only on 10.5
 - order (decimal)
 **/
 csMenu.filter {it.name == "Open"}
 csMenu.appendDivider() //use appendDivider(position) to specify a position

 def submenu = csMenu.appendSubMenu("My sub-menu") //use appendSubMenu(name, position) to specify a position
 submenu.appendItem("My menu item", "${url}?func=ll&objAction=properties&objId=${nodeID}&nextUrl=${params?.nex
}catch(e){
 log.debug("Unable to apply changes to add items menu",e)
}

return amgui.returnCSMenu(csMenu)

Notice that all operations are performed either through the amgui service or the CSMenu and CSSubMenu objects.

Return the proper value

The last operation performed in a CSMenu script should always be a call to the “returnCSMenu(...)” API of the amgui
service

•

222 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

Examples:

D2000 will change the add items menu of the Enterprise Workspace

The following example shows a menu customization script that includes:

filtering the original menu entries (removing entries that match a specific expression)

adding a custom menu entry

returning the modified menu

E.g.

•

•

•

•

223 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

Customize a space's buttons bar: CSMultiButtons¶

Multi-action buttons can be added, removed or modified by using an approach similar to the
CSMenu customization. In this case, customization scripts should be added in the
CSMultiButtons container. The container structure is the same as the one described for the
CSMenu.

As for most other features configured through the Content Script Volume, a convention-over-
configuration approach has been adopted.

The target container in which to place the Content Scripts is CSMultiButtons. The first level
under this container identifies the objects to which the customizations are applied. The naming
convention is one of the following:

D<nodeID>

try{
 //The current space
 def node = docman.getNodeFast(nodeID)
 /**
 Other possibile filter examples:
 it.name == "Folder"
 it.subtype == 0
 **/
 amgui.filterAddItems {
 it.name == "Folder"
 }
 /**
 Other possibile filter examples:
 it.name == "Folder"
 it.subtype == 0
 **/
 amgui.filterAddItems ({false}, true)
 amgui.addBrowseViewAddItem(
 amgui.newBrowseViewAddItemsMenu().builderUrl().setImg("${img}folder_icons/folder5.gif")
 .setName("My new object")
 .setPromoted(true)
 .setUrl("${url}?func=ll&objAction=create&objType=0&parentId=${n
)
}catch(e){
 log.debug("Unable to apply changes to add items menu",e)
}

return amgui.returnAddItemsMenus()

Invoke a Content Script

The url of the menu entry could be used to pass parameters to a custom Content Script that will perform the
desired operations.

Return the proper value

The last operation performed in a CSAddItems script should always be a call to the “returnAddItemsMenu(...)” API of
the amgui service

•

224 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

Examples:

D2000 will change the buttons bar menu of the Enterprise Workspace

E.g.

•

try{
 amgui.addBrowseViewMultiItemButton(
 amgui.newBrowseViewMultiItemButton()
 .builder()
 .setOrder(1100)
 .setJavascriptFunctionName('runContentScript')
 .setJavascriptFile("anscontentscript/js/contentScriptMultifileBar.js")
 .setImageMap("anscontentscript/contentscriptmultifilebar.png")
 .setImageXPos(0)
 .setImageYPos(0)
 .setImageXPosAlternative(-268)
 .setImageYPosAlternative(0)
 .setDisplayName('My button')
 .create()
)
 /**
 Properties that can be used to filter the buttons bar:
 - action (the request handler to be executed e.g. ll.ProcessMultiCopy)

225 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

where the following fields are mostly relevant:

Property Type Description

ImageMap String
The path of the image map file (in the Support
folder) containing the button icon

ImageXPos, ImageXPos2,
ImageYPos, ImageYPos2

Integer
The coordinates of the portion of the image
map to use for the button (normal and on
mouse over)

Order String The order of the button in the menu bar

Type String The button type (should be “Content Script”)

ExecutesOnClient boolean
If the button logic is on the client side (should
be “true”)

DisplayName String The button label

Name String The name of the button

JavascriptFile String
The javascript resource in which the function
controlling the button behavior is defined

JavascriptFunctionName String
The javascript function defined in the
JavascriptFile that controls the button behavior

Customize a space's displayed columns:
CSBrowseViewColumns¶

Content Scripts located in the CSBrowseViewColumns container can be used to perform
modifications to how columns are presented in the standard Content Server Browse View.

 - Order
 - Name
 - DisplayName
 - ExecutesOnClient

 **/
 amgui.filterBrowseViewMultiItemButton {it.name == "mybutton"}

}catch(e){
 log.debug("Unable to apply changes to add multi items buttons bar",e)
}
return amgui.returnBrowseViewMultiItemButtons()

Invoke a Content Script

A sample Javascript file (contentScriptMultifileBar.js) is located in the Content Script Module support folder. Create a
customized version of this file when adding new actions.

226 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

The modifications can be limited to specific portions of Content Server. This feature is enabled
by defining a Content Script that “filters” the browse view columns configuration and performs
the desired modifications. The “amgui” service provides a user-friendly interface to perform the
modifications.

As for most other features configured through the Content Script Volume, a convention-over-
configuration approach has been adopted.

The target container in which to place the Content Scripts is CSBrowseViewColumns. The first
level under this container identifies the objects to which the customizations are applied. The
naming convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

Examples:

D2000 will change the columns visible in the Enterprise Workspace

The following example shows a browse view columns customization script that includes:

create a new column using the builder

filtering the original columns list (removing entries that match a specific expression)

adding the column to the view

returning the modified columns list

E.g.

•

•

•

•

•

•

227 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

The following properties are available for each column object (they are managed through a
builder (https://en.wikipedia.org/wiki/Builder_pattern) the CSBrowseViewColumnBuilder obtained :

try{
 /**
 A browse view column is quite a complex object. The amgui service provides you with a builder in order to help yo
 **/
 def columnBuilder = amgui.newBrowseViewColumn().builder()

 .setColumnName("type") // Column name corresponds to the property
 //from the browse view row that will be used
 //to populate the column.
 .setDisplayName("Type") // Column display name is the label used for the column.
 .setAlignment("left")
 .setSortable(true) // If sortable the Javascript sorting
 //function will look for a property named:
 // columnName+'SortStr' or columnID+'SortStr'
 // to perform sorting
 .setColumnEMWidth(1.0)
 .setDisplayAsLink(true)
 .setNewWindow(true)
 .setUrl("${url}?param=%value%") // The url to be opened.
 // The following placeholder
 // can be used in the expression:
 // %value%, %objid%, %rawvalue%, %nexturl%"

 .setFormatValueMask("Type :%value%") // The format mask to be used to
 // present the column value.
 // The following placeholder
 // can be used in the expression:
 // %value%, %objid%, %rawvalue%, %nexturl%"
 /**
 A filter is a closure that returns true if the column shall be kept, false otherwise.
 In the filter function scope the object "it" represent the column object.
 For default columns the only attribute available is columnID (string) which might have one out the following valu
 dataidColumn, dateColumn, arbitraryColumn, columnWithURL, userColumnWithURL)

 All the other columns have the following properties:
 DisplayAsLink (boolean), DisplayValue (string), NewWindow (boolean), NewWindowTitle (string), URL (string), align

 **/
 amgui.filterBrowseViewColumn {
 it.columnID != "dateColumn"
 }
 amgui.addBrowseViewColumn(columnBuilder.create())

}catch(e){
 log.debug("Unable to apply changes to add items menu",e)
}

return amgui.returnBrowseViewColumns()

228 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern

Property Type Description

isDefault boolean True if the column has a Javascript definition

sortable boolean True if the column has a Javascript definition

DisplayAsLink boolean The value of the column will be wrapped into an HTML link

DisplayValue String The column's value

NewWindow boolean If DisplayAsLink = true, opens the link in a new window

NewWindowTitle String
If DisplayAsLink = true, the title of the window in which link will
be opened

Url String If DisplayAsLink = true, the URL to be used for building the link

alignment String Column alignement. One out: 'left', 'right', 'center'

columnID String Column unique identifier

columnName String Column name

displayName String Column name as it will be displayed in the page

displayName String Column name as it will be displayed in the page

Default Columns¶

Default columns are columns for which a Javascript column definition exists. Default columns
Javascript definitions can be found in webnode/browse.js file. The following default columns
definition should exist in your environment:

Value Description

checkBoxColumn Used for selecting multiple nodes

typeColumn Represents the node's type in the form of a web-icon

nameWthPrmtdCmdsColumn Name with promoted commands column

sizeColumn Size of the document or number of items in the space

dataidColumn Node's unique system identifier

dateColumn Node's last modification date

arbitraryColumn Template for other columns (ABSTRACT)

columnWithURL Template for other columns (ABSTRACT)

userColumnWithURL Node's owner

Filtering columns - lines from 39 to 41

A filter is a closure that returns true if the column shall be kept, false otherwise.

229 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

The amgui service features a method that can help you in creating your own custom column
Javascript definition on the basis of a template that is stored in the Content Script Volume
(CSVolume:CSGui:BrowseViewColumnDefinition). The custom Javascript column's definition can be
rendered, for example, as part of a customview, an appearance or a Content Script

Here below a real-world usage example. The Script is used to create a custom view within the
space in which is stored.

amgui.getBrowseViewColumnDefinition(
 String columnID, //The id of the column
 Map templateContext, // A map to be used as model for
 // the column's definition template
 [,CSDocument param] // An optional template document.
 // If none is provided the default
 // CSVolume:CSGui:BrowseViewColumnDefinition
 // will be used
)

jsAddCell = """
 var cell;

 try
 {

 cell = rowStruct.insertCell(cellCount++);
 cell.className = this.cellClassName;
 if (true === this.nowrap)
 {
 cell.style.whiteSpace = 'nowrap';
 }
 cell.innerHTML = this.getCellValue(dataRow, rowNo);

 }
 catch(e)
 {
 exceptionAlert(e, "Issue occured in browse.js/htmlColumn.AddCell.");
 }
 return cellCount;
"""

jsGetCellValue ="""
 var val = dataRow['pstatus'];
 if (val == undefined)
 {
 val = "";
 }
 return val;
"""

def customView = docman.getTempResource("customView", ".html")

customView.content.withWriter{
 it << amgui.getBrowseViewColumnDefinition("pstatus",
 ["jsAddCell":jsAddCell, "name":"Status", "jsGetCellValue"
}
def cv = docman.createCustomView(self.parent, "customView", customView.content)
cv.setIsHidden()
cv.update()

230 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

For default columns (listed in the table above) the only attribute available is columnID (string).

Customize a space content view: CSBrowseView¶

Content Scripts located in the CSBrowseView container can be used to perform modifications
on the content of a browse view.

The target container in which to place the Content Scripts is CSBrowseView. The first level
under this container identifies the objects to which the customizations are applied. The naming
convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object
subtype on Content Server.

The following example shows a browse view customization script that will iterate on each row in
the browse view and perform modifications for objects of subtype 43200 (Content Scripts)

•

•

try{

 /**
 Properties that can be used to filter the browse view rows:

231 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

The following properties are available for filtering or modification on each row object that is
being iterated:

Property Type Description

dataId Numeric The node's unique identifier

 - dataId (Numeric)
 - name (String/Html will be rendered inside an 'a' tag)
 - link (String)
 - size (String/Html e.g. '1 KB')
 - date (String e.g.
 - imgStr (String)
 - imgLargeStr (String)
 - imgThumbnailStr
 - promotedCmds (Html)
 - modifiedImgs (Html)
 - imgStatus (String)
 - statusName (String)

 **/
 amgui.filterBrowseView { row ->

 // Just for Content Scripts
 if(row.type == "43200"){
 row.checked = true
 row.name = "${row.name.toUpperCase()}"
 row.promotedCmds = """ <div style="font-weight:bold;background-color:#EFEFEF;padding:10px;">${row.promote
 row.modifiedImgs = ""

 row.imgStatus = "${img}webnode/new.gif"
 row.statusName = "Ready to be executed"
 row.link ="http://www.answermodules.com/products/content-script"
 row.size = "not so big afterall..."

 row.date = amgui.formatDateForBrowseView(new Date()) //This is a shortcut to format data

 row.imgStr = "${img}anscontentscript/lib/img/icons/product-design.png"
 row.imgLargeStr = "${img}anscontentscript/lib/img/icons/product-design_large.png"
 row.imgThumbnailStr = "http://www.answermodules.com/img/content-script/content-script-banner.png"
 }

 // This to be sure that the rows will be rendered
 return true
 }
}catch(e){
 log.debug("Unable to filter browse view rows for node {}", nodeID, e)
}
return amgui.returnBrowseViewRows()

Filtering rows - lines from 20 to 42

The filtering closure passed as parameter to the amgui.filterBrowseView(...) method should return a boolean value
of “true”. If “false”, the row will not be rendered.

Add a new row

It is possible to add new rows from scratch by using the amgui.addBrowseViewRow(...) method. A blank row
template can be obtained through the amgui.newBrowseViewRow() method

232 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

Property Type Description

name
String/
HTML

The node's name Html will be rendered inside an 'a' tag

link String The link to be associated to the node's name

size
String/
HTML

The node's side e.g. '1 KB'

date String The node's last modification date

imgStr String The url for the node's icon

imgLargeStr String The url for the node's icon when the node is featured

imgThumbnailStr String The url for the node's thumbnail

promotedCmds HTML
The HTML code containing links to the node's promoted
functions (can be any HTML)

modifiedImgs HTML
The HTML code to be used to notify users that the node's has
been modified

imgStatus String The url for the node's status icon

statusName String The node's status name

Create a custom column backed by Content Script:
CSDataSources¶

Since version 1.5 Content Scripts can be used as Column Data sources. Content Scripts placed in
the CSDataSources Template Folder will automatically be available as Column Data Sources.

The CSDataSource scripts will automatically be invoked by Content Server for each node of the
system, and the resulting value will be used as a column value.

Return the proper value

A CSDataSource Content Script MUST always return a String object.

233 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

In the Content Script code, the execution context (/working/contentscript/scripts/#execution-
context) will be enriched by the framework with the following information related to the current
node:

volumeID

parentID

dataID

createDate

modifyDate

As per standard column data sources the developer is in charge of defining and implementing a
reliable updating strategy. Most of the time the task can be accomplished implementing either
a synchronous or an asynchronous (see Managing events (/administration/csvolume/
#cssynchevents-and-csevents)) event script.

As a matter of fact, Content Script features two different APIs that can be used to update
columns' datasources values.

The first one is supposed to be used with standard columns’ datasources, the latter with
Content Script backed columns' datasources.

The updateContentScriptColumnValue takes as secondo parameter the name of the Script used
to implement the column’s datadasouce.

The updateColumnValue method takes as second parameter a dataSourceIdentifier, which can
be easily determined inspecting the ExtendedData column’s value of the corresponding Column
object on the DTree table (property “dataSource”).

E.g.

•

•

•

•

•

docman.updateColumnValue(CSNode node, //The node for which you want to update the column's value
 String dataSourceId, // The standard identifier for the column's datasources
 String columnValue // The new value for the column
)

docman.updateContentScriptColumnValue(CSNode node, //The node for which you want to update the column's value
 String scriptName, // The name of the Content Script script that serves
 // datasource
 String columnValue // The new value for the column
)

def exData = sql.runSQL(""" select ExtendedData EXT
 from DTree
 where DataId = %1 """,
 false,
 false,
 -1,
 2109 //The column object DataId

234 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/scripts/#execution-context
/working/contentscript/scripts/#execution-context
/working/contentscript/scripts/#execution-context
/working/contentscript/scripts/#execution-context
/administration/csvolume/#cssynchevents-and-csevents
/administration/csvolume/#cssynchevents-and-csevents
/administration/csvolume/#cssynchevents-and-csevents
/administration/csvolume/#cssynchevents-and-csevents

).rows[0].EXT
out << extData.getMapFromOscript().dataSource //Returns sys_CreateDate
 //(on most of the systems)

235 Extension: Classic UI

Copyright © 2013-2020 AnswerModules Sagl

Beautiful WebForms

Content Server object

Beautiful WebForms views are document-class objects on Content Server.

Being standard objects, Beautiful WebForms views comply with Content Server permissions
model. Upon creation, the object can be edited with the web-based IDE selecting the 'Form
Builder' function in the object function menu.

Creating a Beautiful WebForms View¶

Beautiful WebForms views can be created in the same way as standard html views. In the 'views'
tab of the 'form template', an additional 'Beautiful Form' entry will be available in the 'add view'
dropdown menu.

As per standard views, the creation requires a view name be specified. Standard versioning
options apply to form views.

236 Beautiful WebForms

Copyright © 2013-2020 AnswerModules Sagl

Upon creation, the view can be edited with the web-based IDE selecting the 'Form Builder'
option in the object options menu.

Understanding the view object¶

Beautiful WebForms views are much more than simple html-views. They are active objects that
can be used to create very complex applications. In order to implement all their additional
functionalities, Beautiful WebForms views are decorated with a set of information used by the
Beautiful WebForms framework for determining how to render, and how to display form's data
within them.

In the image above a simplified representation of the information that constitutes a Beautiful
WebForms view is highlighted:

(A) View's versions: Beautiful WebForms views are standard FormTemplate’s views thus
versioned document-class objects. Each version is, in the very end, nothing but a Velocity
(http://velocity.apache.org/) template document (HTML code + template expressions).

(B) For each version created with the FormBuilder's smart-editor the BWF framework
archives the smart-editor view's "model" into an internal database table. The smart-editor
view's model is constituted by the list of the configurations used for each widget that
build the view.

•

•

237 Content Server object

Copyright © 2013-2020 AnswerModules Sagl

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

(C) View's properties: Beautiful WebForms views are associated with a set of predefined
properties persisted as the object's extended data. These properties are related just to
the last view's version.
The view's predefined properties are:

Form Builder mode used for creating the current view's version (either "source
code" or "smart editor",

The list of static "css" view's dependecies dynamically determined on the basis of
the widgets used to build the view

The list of static "javascript" view's dependecies dynamically determined on the
basis of the widgets used to build the view

The number of view's columns

The identifier of the library of widgets used to build the view

The ID of the view template (if any) associated to the view

Form builder

The Form Builder is the privileged IDE for Beautiful WebForms. On the first load of an empty
view, the Form Builder will initialize it with a default input widget for every field in the form
template. The view will then be available for further editing.

Layout¶

The IDE is composed of a set of areas and controls, with different purposes.

The Main Working Area shows a preview of the current form view, with the available input
fields

The Widget Library (on the left) features a set of predefined widgets, which can be easily
dragged and dropped in the working area

The Widget Configurator panel (on the right) is linked to the widget currently selected in
the main working area

•

1.

2.

3.

4.

5.

6.

•

•

•

238 Form builder

Copyright © 2013-2020 AnswerModules Sagl

The Main Working area contains the two editor windows.

Smart Editor: allows for drag & drop, editing and configuration based on visual tools

Advanced Editor: allows for full control on the form view code.

By default, the Advanced Editor is locked and the Smart Editor is active. The two modes are
mutually exclusive, and can't be active at the same time.

Shortcuts¶

The following keyboard shortcuts are available while using the editor:

Shortcut Description

Ctrl + S Save the current view (add a new version)

Ctrl + Canc Delete the selected widget(s)

Ctrl + B Clone the selected widget(s)

Shift + Left Ar. Reduce the label’s dimension for the selected widget(s)

Shift + Right Ar. Increment the label’s dimension for the selected widget(s)

Ctrl + Left Ar. Reduce the dimension for the selected widget(s)

Ctrl + Right Ar. Increment the dimension for the selected widget(s)

Ctrl + Mouse sel. Select multiple widgets

Ctrl + Space In sourcecode editor - show the code autocompletion hints

Ctrl + H In sourcecode editor - Toggle the online Help window

F11 In widget’s configuration panel – Maximize editor (full-screen mode)

•

•

239 Form builder

Copyright © 2013-2020 AnswerModules Sagl

Top Bar controls (DESIGNER)¶

Command Description

Versions

Save the view (adds a new version)

Open the object’s Versions tab

Close the FormBuilder

Libary

Selects the widgets’ library to use for creating the view

Configures the number of columns in the view layout. In order to take effect,
requires to save the view & reload the editor window

View template

The View’s template associated with the form can be selected with the
dropdown menu, or, as an alternative, selecting a suitable document from
Content Server.

View

Switch the whole view between Read Only and Editable mode (affects the
way input widgets are rendered)

Switch the whole view between Read Only and Editable mode (affects the
way input widgets are rendered)

Clear the entire working area

Widget

Reposition the widget, moving it one step up/down in the form

Pick Up the widget (to drop it elsewhere in view)

Duplicate the selected widget

240 Form builder

Copyright © 2013-2020 AnswerModules Sagl

Command Description

Remove the widget from the form

Open the widget’s Configuration Panel

Toggle the visibility of widgets that are not rendered in the final view (e.g.
scripts)

Selection

Increase/decrease the size of the widget’s label (if available). This option
affects the number of columns spanned horizontally by the label.

Increase/decrease the size of the widget. This option affects the number of
columns spanned horizontally by the whole widget (including the label, if
present).

Change of the widget's position. This option affects the number of columns
spanned horizontally by the whole widget (including the label, if present).

Help

Access the module’s online guide and the support portal

Validation

Red label: The view failed the validation and most likely will fail to compile

Green label: The view is well-formed

Widget Scope

To enable the Widget Scope options in the menu, simply right click on the target widget in the working area.

Columns

When switching the number of columns, save & reload the page editor to force reload of all widgets in the working
area

241 Form builder

Copyright © 2013-2020 AnswerModules Sagl

Top Bar controls (DEVELOPER)¶

Command Description

Versions

Save the view (adds a new version)

Open the object’s Versions tab

Close the FormBuilder

Source code

Opens the view's source code editor

Downloads the view's current model to be used for creating a new widget

Downloads the view's localization file

Reloads all the available localization files

Scripts

Opens the On-load CLEH Content Script Editor

Opens the Pre-submit CLEH Content Script Editor

Opens the On-submit CLEH Content Script Editor

Validation

242 Form builder

Copyright © 2013-2020 AnswerModules Sagl

Command Description

Red label: The view failed the validation and most likely will fail to compile

Green label: The view is well-formed

Building views

Understanding the grid system¶

In order to understand some of the features presented in the next sections, it is necessary to
introduce the concept of Grid System, which has been adopted in the Beautiful WebForms Form
Builder and views.

When creating or modifying a Form view, all of the widgets in the view appear neatly aligned to
each other. The widgets can be modified in size only in discrete steps: that is, each widget can
be assigned a size from a set of predefined options. When the view is presented to the user, the
actual size of the widget will be proportional to the selected value.

To understand the logic behind this behaviour, you can imagine the Form fieldset area as if it
was divided in a fixed number of columns (12 by default, 24 optional). By forcing each widget to
span over a whole number of columns, we keep the overall layout of the form clean and tidy,
eliminating the effort that is usually required to fine-tune the alignments and spacings. To
better understand this concept, please take a look at the following image.

Editing source code

View's versions created editing directly the source-code editor can't be further modified with the FormBuilder's
smart-editor. If you switch from source-code editor to smart-editor any changes applied modifying the source code
will be lost.

243 Building views

Copyright © 2013-2020 AnswerModules Sagl

Additionally, the technology used for the grid layout is responsive. The form will automatically
adjust to the size of the screen in which it is viewed, degrading gracefully in case of screen of
small size.

In addition to the default 12-column grid, some of the built-in templates provided with
Beautiful WebForms support a 24-column grid: this allows for a greater precision and more
possibilities when creating the form layout. It is possible to configure the view to use one
system or the other by toggling a menu in the Form Builder, as shown in the following sections.

Here after is an example presenting the same view as the previous example, but this time built
on a 24-column grid.

244 Building views

Copyright © 2013-2020 AnswerModules Sagl

Understanding the Beautiful WebForms request life-
cycle¶

Beautiful WebForms implement a slightly different lifecycle if compared to standard forms,
thanks to their custom submission mechanism.

How incoming requests are processed¶

Beautiful WebForms are managed through a dedicated endpoint. Upon submission, the
underlying engine performs server side validation. Only after successful validation, the form
data is eventually submitted to Content Server.

The Beautiful WebForms life-cycle management of incoming requests can be schematized in
the following steps:

Form rendering request: a user requests the form

ON LOAD - Custom logic execution hook

Form view rendering: the form page is rendered

User data input: the user interacts with the form and populates the input fields

1.

2.

3.

4.

245 Building views

Copyright © 2013-2020 AnswerModules Sagl

Form submit action: the user attempts to submit the form data

Client side validation: the client side library validates the input fields

Actual data submission to Beautiful WebForms endpoint: in case of successful validation,
data is submitted to the server

Server side validation: the Beautiful WebForms engine performs server side validation on
the submitted data

PRE SUBMIT - Custom logic execution hook

Actual data submission to Content Server: form data is submitted to Content Server

POST SUBMIT - Custom logic execution hook

A validation error in any of the validation steps would interrupt the flow and return to
step 1. Error information would be added to the form view, and used to populate inline
error messages.

In case of validation errors, the data input by the user is preserved for the following view
rendering.

Lifecycle schema¶

The following schema considers a scenario in which a new form is requested by a user:

The following schema is related to a scenario in which the user attempts to submit the form (or
otherwise performs an action that triggers a round trip to the server):

5.
6.

7.

8.

9.

10.

11.

12.

246 Building views

Copyright © 2013-2020 AnswerModules Sagl

Custom Logic Execution Hooks (CLEH)¶

In the two schemas above, there are several highlighted boxes that represent Custom Logic
execution hooks. That is, steps in which it is possible to add customized business logic, in the
form of Content Script code.

The scripts are:

ON LOAD view Content Script: this is the typical hook for prepopulating the form and
manipulating the form view

PRE SUBMIT view Content Script: this is the typical hook for extended validation and
actions that must be performed before that the data is actually saved

POST SUBMIT view Content Script: this is the typical hook for post submit actions (user
notifications, document manipulation on content server, etc.)

Throughout the whole process and in all of these scripts, a form object is available in the
execution context. This object allows to fetch and manipulate the form data, as well as
programmatically add or remove validation errors.

The Content Script objects associated to each execution hook can be accessed and edited
through the Specific Properties tab of the Beautiful WebForm view object.

•

•

•

Starting with version 1.7.0, Beautiful WebForms Views have been transformed in container objects. Content Scripts

associated to Beautiful WebForms views are standard Content Script nodes in the view container. The nodes are
associated to the lifecycle steps by name

247 Building views

Copyright © 2013-2020 AnswerModules Sagl

The Content Scripts associated with CLEHs are regular Content Script objects. In the Script
Context the Beautiful WebForms framework will inject additional items, such as the form object,
which represents the form that is currently associated to the view.

The form object grant access to the form fields structure and the current values of each field,
the form submitted data, the validation rules associated to the form, and provides utilities to
manipulate this information.

E.g.

A commonly used function in the "ON LOAD view script" is

form.isFirstLoad()

The function allows to define actions which are executed only once per form view (the actions
are not repeated in case of submission failure - for example, in case of validation errors).
Typically, field prepopulation happens here.

The following sections provide information on common tasks that can be performed on the
form programmatically in the various Content Scripts.

Managing form fields values¶

The state of the forms can be programmatically accessed and modified through the Content
Script Custom Logic Execution Hooks.

In scripts, form field values can be accessed using the following notation:

form.*normalizedname*.value

where 'normalizedname' is the name of the field after normalization performed by the Beautiful
WebForms framework.

Auto completion

Use the CTRL+Space keyboard shortcut to access autocomplete options on the form object. Options include all the
fields in the form.

248 Building views

Copyright © 2013-2020 AnswerModules Sagl

The rules applied when normalizing field names are:

the only admitted characters are alphanumeric characters and whitespaces (using
different characters can lead to unexpected behavior)

all characters are transformed in lowercase

all characters immediately after a whitespace are transformed in uppercase

As a rule of thumb, it is advised to adopt a naming convention for field names that would be
compatible with SQL table column names.

To better understand the concept, consider the following Form Template, containing a few fields
(using different possible naming conventions):

a field named 'lowercase'

a field named 'UPPERCASE'

a field named 'Capitalized'

a field named 'camelCase'

a field named 'words with spaces'

The fields can be accessed in a script as follows:

'lowercase': form.lowercase.value

'UPPERCASE': form.uppercase.value

'Capitalized': form.capitalized.value

'camelCase': form.camelcase.value

'words with spaces': form.wordsWithSpaces.value

•

•

•

•

•

•

•

•

•

•

•

•

•

form.lowercase.value = "TEST VALUE A" //Form template field name: lowercase
form.uppercase.value = "TEST VALUE B" //Form template field name: UPPERCASE
form.capitalized.value = "TEST VALUE C" //Form template field name: Capitalized
form.camelcase.value = "TEST VALUE D" //Form template field name: camelCase
form.wordsWithSpaces.value = "TEST VALUE E" ////Form template field name: words with spaces

249 Building views

Copyright © 2013-2020 AnswerModules Sagl

// Initalize form field values: some examples

form.lowercase.value = “TEST VALUE A” // Form template field name: lowercase

form.uppercase.value = “TEST VALUE B” // Form template field name: UPPERCASE

form.capitalized.value = “TEST VALUE C” // Form template field name: Capitalized

form.camelcase.value = “TEST VALUE D” // Form template field name: camelCase

form.wordsWithSpaces.value = “TEST VALUE E” // Form template field name: words with spaces

The resulting form (after initialization):

Adding and removing values from multivalue fields¶

In case of multi-value fields, it is possible to programmatically add new values (up to the max-
values limit)

For each field, multiple values can be accessed directly by index (0-based).

By default, if a field value is accessed without specifying an index, the referenced value is the
one with index 0.

form.textvalue.value = "My value" is equivalent to form.textvalue[0].value = "My value"

NOTE: The value at index 0 does not require initialization.

To access values at index > 0:

form.textvalue.addField(1)

form.textvalue[1].value = "My value"

Example. Field initialization:

form.textField.value = "Value A" // The first field (index:0) is always available. no need to add this.

250 Building views

Copyright © 2013-2020 AnswerModules Sagl

The resulting form (after initialization):

Form actions¶

An action is a piece of server side scripting code that is execute in response of a particular type
of request. The action to be performed is identified by the request parameter (am_Action)
submitted with the form. Another optional parameter (am_ActionParams) is sometimes included
when specific information is required by the action.

Standard form actions¶

The framework is capable of handling a set of predetermined actions as part of the Beautiful
WebForms lifecycle.

The following are the standard action managed by the framework:

Action Description
Action ID
(am_Action)

Action parameter (am_ActionParams) usage

Reload
Performs a round trip
to the server and re-
renders the form view.

am_reload not required

Save

Saves the current state
of the form, without
submitting. Available in
Workflow forms only

am_save not required

Exit
Exits without saving
modifications to the
form data

am_exit not required

form.addField("textField", 1) // Additional field's values can be added either through the form object
form.textField.addField(2) // or directly on the field

form.textField[1].value = "Value B"
form.textField[2].value = "Value C"

form.textField.addField(3)
form.textField[3].value = "Value D"

251 Building views

Copyright © 2013-2020 AnswerModules Sagl

Action Description
Action ID
(am_Action)

Action parameter (am_ActionParams) usage

Switch
View

Switches the view and
re-renders the form

am_switchView The ID of the target view

Next

To be used together
with "prev" to create a
wizard-like experience,
enabling the switching
forwards through a
sequence of different
views

am_wizardNext

The ID of the next view. Alternatively, the
target view can be configured on server side
by setting the value
of: form.viewParams.am_wizardNextView

Prev

To be used together
with "next" to create a
wizard-like experience,
enabling the switching
backwards through a
sequence of different
views

am_wizardBack

The ID of the previous view. If not and a
"Next" action was invoked beforehand, the
framework will attempt to switch back to
that view. Alternatively, the target view can
be configured on server side by setting the
value of: form.viewParams.am_wizardPrevView

Standard form actions can be selected by using the Standard Action Button component.

The Standard Action Button component can be configured through the configuration panel to
select the appropriate action

252 Building views

Copyright © 2013-2020 AnswerModules Sagl

Whenever a parameter is required by the selected action (see above table) the appropriate
value can be configured as follows:

Custom form actions¶

It is also possible to define custom actions when submitting a form. In this case, the custom
actions should be handled in the Content Script Custom Logic Execution Hooks.

Custom form actions can be selected by using the Custom Action Button component.

In this case, the configuration panel allows to specify a value for the name of the action and
the value of the (optional) actionParams

253 Building views

Copyright © 2013-2020 AnswerModules Sagl

Whenever the button is used, the information related to action and actionParams will be
available in the request params. It can be easily accessed as follows:

Below is a simple example showing how to use and manage a Custom Action:

def action = params.get("am_action")
def actionParams = params.get("am_actionParams")

Invoking an action

It is possible to manually trigger the execution of Actions in cases where the provided Form Components are not
sufficient to meet specific needs.

254 Building views

Copyright © 2013-2020 AnswerModules Sagl

Attaching Custom information and data to a Beautiful WebForms view
¶

ViewParams¶

It is sometimes necessary to bind to the form object additional parameters and values that are
not supposed to be stored in form fields. It is the case for parameters that are only needed to
control the form page layout: an example is when the HTML template containing the form can
be dynamically configured in some of its parts (for example, a title or logo).

To address this need, the 'form' object is bound to a data map (named 'viewParams') which is
meant to contain additional parameters that are not supposed to be persisted with the form
data.

Entries in the 'viewParams' map can be set and accessed programmatically as in the following
examples.

Example 1. Within a Content Script, set the value of the parameter 'title':

Example 2. Within a Content Script, read the value of the parameter 'title' and store the value in
a variable 'myVar':

Example 3. When accessing the 'viewParams' in an HTML Form Template, the syntax is slightly
different, as the templating engine syntax must be used. For example:

In such cases, the am_setAction(form, action, actionParams) javascript function can be used, where:

form is the id of the html form (eg. form_258191)

action is the action id (eg. am_customAction)

actionParams is the optional value of additional parameters required by the action (eg. '12345')

The following is an example using an HTML button:

•

•

•

<button
onclick="am_setAction('form_258191','am_customAction','12345')"
type="submit"> Custom Action Button </button>

form.viewParams.title = "My Form"

def myVar = form.viewParams.title

<h1>$form.viewParams.title</h1>

255 Building views

Copyright © 2013-2020 AnswerModules Sagl

You can include a '!' in your expression in order to avoid printing the output in the rendered
HTML in case the value of the variable is not set:

ViewParams variables¶

Prior of each view rendering, the Beautiful Form Frameworks injects in the viewParams field of
the Form object a set of variables. The number and type of these variables depend on the
current execution scope. All the variables at the moment of the injection are serialized as
String. The table here below summarizes all the possible variables that can be found in the
viewParams field, indicating for each of them, the original type and name.

<h1>$!form.viewParams.title</h1>

Serializable

any object programmatically added to the 'viewParams' map MUST be a serializable object.

Warning

the actual case of the variable names could depend on the underlying database.

List of the variable automatically injected into the ViewParams map 

Variable Name	Scope	Original Type
LL_CgiPath	Form, Workflow	String
LL_NextURL	Form, Workflow	String
LL_SupportPath	Form, Workflow	String
LL_UserContact	Form, Workflow	String
LL_UserFirstName	Form, Workflow	String
LL_UserFullName	Form, Workflow	String
LL_UserGroupName	Form, Workflow	String
LL_UserID	Form, Workflow	Integer
LL_UserLastName	Form, Workflow	String
LL_UserLogin	Form, Workflow	String
LL_UserMailAddress	Form, Workflow	String
LL_UserMiddleName	Form, Workflow	String
LL_UserTitle	Form, Workflow	String
MapTask_CustomData	Workflow	Assoc
MapTask_Description	Workflow	String
MapTask_Form	Workflow	Assoc
MapTask_Instructions	Workflow	String
MapTask_Priority	Workflow	Integer
MapTask_StartDate	Workflow	Date
MapTask_SubMapID	Workflow	Integer
MapTask_SubType	Workflow	Integer
MapTask_Type	Workflow	Integer
Map_Description	Workflow	String
Map_Instructions	Workflow	String
Map_SubType	Workflow	Integer
Map_Type	Workflow	Integer
SubWorkTask_DateDone	Workflow	Date
SubWorkTask_DateDue_Max	Workflow	Date
SubWorkTask_DateDue_Min	Workflow	Date

256 Building views

Copyright © 2013-2020 AnswerModules Sagl

Form Components that make use of 'viewParams' values.¶

Various components available in the Form Builder are configurable and require one or more
parameters to be programmatically set: these parameters can be made available to the
component as values in the 'viewParams' container variable.

The widgets library¶

The Widgets library is an extensible set of form widgets that can be used through the drag &
drop visual editor. To simplify the navigation, the widgets are arranged in families of objects
with similar functionalities.

To add a new widget:

Open the widget library group that contains the widget

Click on the widget, holding the mouse button down

SubWorkTask_DateMilestone	Workflow	Date
SubWorkTask_DateReady	Workflow	Date
SubWorkTask_Flags	Workflow	Integer
SubWorkTask_IterNum	Workflow	Integer
SubWorkTask_PerformerID	Workflow	Integer
SubWorkTask_Status	Workflow	Integer
SubWorkTask_SubWorkID	Workflow	Integer
SubWorkTask_TaskID	Workflow	Integer
SubWorkTask_Title	Workflow	String
SubWorkTask_Type	Workflow	Integer
SubWorkTask_WaitCount	Workflow	Integer
SubWorkTask_WorkID	Workflow	Integer
SubWork_DateCompleted	Workflow	Date
SubWork_DateDue_Max	Workflow	Date
SubWork_DateDue_Min	Workflow	Date
SubWork_DateInitiated	Workflow	Date
SubWork_Flags	Workflow	Integer
SubWork_MapID	Workflow	Integer
SubWork_Project	Workflow	Dynamic
SubWork_ReturnSubWorkID	Workflow	Integer
SubWork_ReturnTaskID	Workflow	Integer
SubWork_Status	Workflow	Integer
SubWork_SubWorkID	Workflow	Integer
SubWork_Title	Workflow	String
SubWork_WorkID	Workflow	Integer
Work_DateCompleted	Workflow	Date
Work_DateDue_Max	Workflow	Date
Work_DateDue_Min	Workflow	Date
Work_DateInitiated	Workflow	Date
Work_Flags	Workflow	Integer
Work_ManagerID	Workflow	Integer
Work_OwnerID	Workflow	Integer
Work_Status	Workflow	Integer
Work_WorkID	Workflow	Integer

The mapping between form template fields and their default input widget used to initialize Beautiful WebForms

Views can be customized by configuring the desired CSFormSnippet in the Content Script Volume.

1.

2.

257 Building views

Copyright © 2013-2020 AnswerModules Sagl

Drag the widget to the desired position in the working area (a highlighted box will
appear)

Drop the widget in the working area

The widget configuration panel¶

When a widget in the Main Working Area is selected, the Configuration Panel can be activated
through the dedicated menu option or by right-clicking the widget. The content of the panel is
specific to the type of widget, and allows to define the widget binding to underlying form fields
(in case of input widgets), as well as how the widget will be rendered, what validation rules will
be applied to it, and any other setting that could be necessary for the specific widget.

3.

4.

258 Building views

Copyright © 2013-2020 AnswerModules Sagl

Beautiful WebForms View Templates¶

The BWF Framework enforces the Model View Controller paradigm, in fact Beautiful WebForms
Views (and Templates) are always processed, before being rendered, from the module’s internal
Templating engine. At rendering time the BWF framework creates (as Model) for the Form View

259 Building views

Copyright © 2013-2020 AnswerModules Sagl

an Execution Context very similar to the one used by the Content Script Engine. The main
difference between the two contexts is the presence of the "form" variable that refers to a
server side representation of the Form object to which the Form View has been associated. As
discussed each BWF View can be associated to a Form Template. At rendering time the
framework executes the following operations:

Substitutes in the Form Template any occurrences of the tag <am:form /> with the
content of the Form View as defined, for example, using the Form Builder

Evaluates the result of the previous operation with the internal Templating Engine

The most important consequence of the aforementioned rendering procedure is that any valid
Templating expression present both in the View and in the Template will be evaluated and
eventually substituted by the Templating engine. This feature is widely used by default Form
Templates and default Form Snippets.

Default Form Templates make use of these characteristics of the framework to slightly change
their aspect, resulting behaviors, or more simply to load the most appropriate static resources
(i.e. javascript libraries and CSS stylesheets).

For developers convenience the BWF frameworks defines also a set of macro that simplify the
creation of new templates or the management of existing one. In the following section the
source code of these macro is listed.

Customize the way validation error messages are
rendered¶

In order to customize the way validation error messages related to form's fields are displayed
you can leverage the Errors (/working/bwebforms/widgets/#errors_1) widget in order to
override both the javascript (used to render errors on client side) and Velocity (used to render
errors on server side) functions in your view.

•

•

(function(root, factory){
if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,
 factory($, _, amui, amform);
 });
}else if (typeof require === 'function'){
 require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,_, amui
 factory($, _, amui, amform);
 });
} else {
 factory(root.jQuery, root.amui);
}
}(this, function($, _, amui, amform) {

 amform.zcleanFieldValidationError = function (comp){
 var wrapper =comp.closest('.am-form-input-wrap')
 wrapper.removeClass('am-has-error-tooltip')
 wrapper.removeClass('has-error')
 wrapper.data('title', '').attr('title', '');

260 Building views

Copyright © 2013-2020 AnswerModules Sagl

/working/bwebforms/widgets/#errors_1
/working/bwebforms/widgets/#errors_1

 try {
 wrapper.tooltip('destroy')
 } catch (e) {
 }
 }

 amform.zcleanFormValidationError = function (form){
 form.find('.help-block.has-error').remove();
 form.find('.am-form-input-wrap').removeClass('has-error');
 form.find('.am-has-error-tooltip').each(
 function() {
 $(this).removeClass('am-has-error-tooltip').data('title', '')
 .attr('title', '')
 try {
 $(this).tooltip('destroy')
 } catch (e) {
 }
 });
 }

 amform.zdisplayValidationError= function (message, failingElements){
 $(failingElements).each(
 function() {
 var wrapper = $(this).closest('.am-form-input-wrap')
 try {
 wrapper.addClass('am-has-error-tooltip').addClass(
 'has-error').attr(
 'title',
 ((wrapper.data('title') != undefined) ? wrapper
 .data('title') : '')
 + ' ' + message);
 wrapper.tooltip('destroy')
 wrapper.tooltip()
 } catch (e) {
 }
 });
 }
}));

#macro(showErrors $field)
<script>
(function(root, factory) {
 if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','v3/js/am/am_init','underscore','regula'], function($,amui,underscore,regula)
 factory($, amui, _, regula);
 });
 }else if (typeof require === 'function') {
 require(['jquery', 'v3/js/am/am_init', 'underscore', 'regula'], function ($, amui, _, regula)
 return factory($, amui, _ ,regula);
 });
 } else {
 factory(root.jQuery, root.amui, root._, regula);
 }
}(this, function($, amui, _, regula) {
 #if($field.getValidationStatus().size() gt 0)
 amui.registerInitWidgetCallback(function(){
 $('#$field.id').data('title','');
 #foreach ($error in $field.getValidationStatus())
 $('#$field.id').data('title', $('#$field.id').data('title')+' $error.validationError'
 #end
 var wrapper = $('#$field.id').closest('.am-form-input-wrap');
 try{
 wrapper.tooltip('destroy')
 }catch(e){
 }
 wrapper.addClass('am-has-error-tooltip')
 .data('title', $('#$field.id').data('title'))

261 Building views

Copyright © 2013-2020 AnswerModules Sagl

Display errors in Smart View¶

In order to be compliant with the way SmartView displays error messages the following
overrides can be utilized

 .attr('title', $('#$field.id').data('title'))
 .tooltip()
 .addClass('has-error');
 });
 #end
}));
</script>
#end

(function(root, factory){
if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,
 factory($, _, amui, amform);
 });
}else if (typeof require === 'function'){
 require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,_, amui
 factory($, _, amui, amform);
 });
} else {
 factory(root.jQuery, root.amui);
}
}(this, function($, _, amui, amform) {

 amform.zdisplayValidationError= function(message, failingElements){
 $(failingElements).each(
 function() {
 var wrapper = $(this);
 try {
 wrapper.addClass("am-smartui-error");
 wrapper.closest('.am-form-input-wrap').append("<div class='amsmartui-help-block form-control-erro

 } catch (e) {
 //jquery compatibility
 }
 });
 }

 amform.zcleanFieldValidationError=function(comp){
 var wrapper =comp
 wrapper.removeClass('am-smartui-error')
 wrapper.closest('.am-form-input-wrap').find(".amsmartui-help-block").remove();

 }

 amform.zcleanFormValidationError = function(form){
 form.find('.help-block.has-error').remove();
 form.find('.am-form-input-wrap').removeClass('has-error');
 form.find('.am-smartui-error').each(
 function() {
 $(this).removeClass('am-smartui-error').closest('.am-form-input-wrap').find(".amsmartui-help-block"
 });
 }
}));

#macro(showErrors $field)
<script>
(function(root, factory) {

262 Building views

Copyright © 2013-2020 AnswerModules Sagl

Widgets

Beautiful WebForms Widgets¶

Beautiful WebForms Widgets are the base units a View is composed of (a View is in fact nothing
but a collection of Widgets). Beautiful WebForms Widgets are implemented by Module Suite
Template objects of type Beautiful WebForm Snippet stored under the CSFormSnippets folder in
the Content Script Volume (/administration/csvolume/).

Widgets are defined by a Model and a Template.

View's Widgets templates and their models are evaluated by the Form Builder 1 to produce the
intermediate View Velocity Template Document (VVTD).

At runtime (when a WebForm is rendered) the Beautiful WebForm MVC framework evaluates the
VTD against a Content Script Model to produce the final WebForm HTML page.

 if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','v3/js/am/am_init','underscore','regula'], function($,amui,underscore,regula)
 factory($, amui, _, regula);
 });
 }else if (typeof require === 'function') {
 require(['jquery', 'v3/js/am/am_init', 'underscore', 'regula'], function ($, amui, _, regula)
 return factory($, amui, _ ,regula);
 });
 } else {
 factory(root.jQuery, root.amui, root._, regula);
 }
}(this, function($, amui, _, regula) {
 #if($field.getValidationStatus().size() gt 0)
 amui.registerInitWidgetCallback(function(){
 var wrapper = $('#$field.id');
 wrapper.addClass("am-smartui-error");
 #foreach ($error in $field.getValidationStatus())
 wrapper.closest('.am-form-input-wrap').append("<div class='amsmartui-help-block form-control-error'>
 #end

 });
 #end
}));
</script>
#end

263 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/administration/csvolume/
/administration/csvolume/

Model and Template¶

The Widget model is implemented in the form of a Javascript object while the template is
implemented in the form of an Handlebars (https://handlebarsjs.com/) template. The template
might contain a set of partials (https://handlebarsjs.com/guide/partials.html#partials) defined
by Module Suite Template objects of type Content Script Snippet stored under the CSSystem
folder in the Content Script Volume (/administration/csvolume/) , partials can be identified
because their name is prefixed by the Partial keyword.

Below an example of a Widget Model and template:

Model

Template

{
 "fields":{
 ...
 "h_base" :{"title":"Basics","type":"_help","help":"oh_baseProperties"},
 "fieldA":{"label":"A Field Label","type":"input","value":"","help":"Field's help message", "i18nDisabled"
 ...
 }
 ,"title":"My Widget"
 ,"help":{"value":"oh_textInput"}
 ,"order":["fieldA", "fieldB"]
 ,"jsdependencies":[]
 ,"cssdependencies":[]
 ,"nonRendableWidgets":false
 ,"columns":true
 ,"binding":true
 ,"style":true
 ,"validation":true
 ,"readonly":true
 ,"container":false,
 ,"rendered": true
}

264 Widgets

Copyright © 2013-2020 AnswerModules Sagl

https://handlebarsjs.com/
https://handlebarsjs.com/
https://handlebarsjs.com/guide/partials.html#partials
https://handlebarsjs.com/guide/partials.html#partials
/administration/csvolume/
/administration/csvolume/

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

265 Widgets

Copyright © 2013-2020 AnswerModules Sagl

65

66

67

68

69

70

71

{{> _renderedOpen}} {{!-- Manages the "Show-if" configuration option (creates the VTL expression)--}}
{{#*inline "_componentClass"}}am-form-text-input{{/inline}}

{{#if label}}^
 {{> _labelLeft}}
 <div class="{{> _colSize}} {{>_componentClass}} {{add_class}}" {{>_amWID}}> {{!-- {{> _colSize}} is the part
 {{> _labelTop}}

{{else}}
 <div class="{{> _colSize}} {{>_componentClass}} {{#unless label}}{{#if required}}am-form-required{{/if}}{{/un
{{/if}}

 {{#if render}}
 #foreach($rowField in {{id}})
 {{> _defaultValue }}
 {{/if}}

 <div class="am-form-input-wrap" {{> _popover }} >

 {{#if render}}
 #if({{{readonly}}})

 <p class="{{#if bold_body}}am-form-bold{{/if}}" >
 $esc.html({{id}}.value)
 </p>

 #else

 {{/if}}
 <input id="{{id}}.id"
 name="{{id}}.id"
 value="{{#if render}}$esc.html({{id}}.value){{else}}{{placeholder}}{{/if}}" type
 placeholder="{{placeholder}}"
 class="form-control"
 style="{{style}}"
 data-constraints="{{id}}.validation('{{validation}}')"

 {{#each dataatts}}
 data-{{label}}="{{{value}}}"
 {{/each}}
 />

 {{> _addDeleteButtons}}

 {{> _showErrors}}
 {{#if render}}
 #end
 {{/if}}
 </div>

 {{#if render}}
 #end
 {{/if}}

 {{#if helptext}}
 <p class="help-block">{{helptext}}</p>
 {{/if}}

{{#if label}}

 {{> _labelBottom}}
 </div> {{!-- Close component div --}}
 {{> _labelRight}}

{{else}}
 </div> {{!-- Close component div --}}
{{/if}}

266 Widgets

Copyright © 2013-2020 AnswerModules Sagl

<!-- END Text input-->

{{> _renderedClose}}

267 Widgets

Copyright © 2013-2020 AnswerModules Sagl

Designers can modify widgets' models properties using the Form Builder widgets configuration
panel. Any a widget's model modification triggers the immediate re-evaluation of the widget's
template resulting into an update of the source code.

Model properties details

Property Mandatory Default Note

fields YES
A map containing configuraiton options. The options names and

values are used to build the actual widget's model

title YES The widget's title as displayed in the left sidebar of the FormBuilder

help NO
The help message displayed in in the Form Builder configuration
panel, as well as on the FormBuilder's left sidebar

order NO
A list containing the widget's configuration's options names in the

order in which they should be displayed in the configuration panel

jsdependencies NO List of static javascript resources the widget depends on

cssdependencies NO List of static CSS resources the widget depends on

nonRendableWidgets NO false
if true the widget can be resized (if true columns field is automatically
injected among the widget's model fields list) (default: true)

columns NO true
The help message displayed in in the Form Builder configuration
panel

binding NO true if true the widget can be bound to an attribute of the Form Template

style NO true
if true the field Custom Style is automatically injected among the
widget's model fields list.

validation NO true True if the widget support validation (default:true)

readonly NO true
if true the field Read Only is automatically injected among the
widget's model fields list.

container NO false

if true the widget will act as a container. The final view source code
for all the widgets that are, in the Form Builder's working area,

between the container opening and closing widget will result
wrapped by the source code generated by the widget itself. When
dropped in the Form Builder's main working area the corresponding
closing widget will be automatically created and bound to it. The
closing widget shall be named after the opening widget and suffixed

with _closed.

rendered NO true
True if the designer should be able to specify a condition under which
the widget will be displayed ("Show if" configuration option)



{{#if render}} expression in Widgets templates

As previously discussed, widget templates are mainly used to generate the VVTD, however they are also used to
generate the HTML code that represents the widget in the FormBuilder workspace. When the Widget template is
evaluated to generate the HTML for the FormBuilder workspace, an additional "render" property is injected into the
widget model, so the designer has the possibility to filter elements that should not be rendered in static HTML. (e.g.
any Velocity (https://velocity.apache.org/) expression).



268 Widgets

Copyright © 2013-2020 AnswerModules Sagl

https://velocity.apache.org/
https://velocity.apache.org/

Static Resources Management¶

Beautiful WebForms widgest might depend on static resources (Javascript and CSS files). These
dependencies are defined in the widget's model through the properties jsdependencies and
cssdependencies.

The definition of a static-resource dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file
the version of the resource to load (a string formatted as "Major.Minor.Revision")
an optional list of dependency definitions for static resources this library depends on

E.g.

When a form is rendered the framework computes the list of all the static resources required by
the associated view's widgets. The list is optimized to avoid repetitions and to respect the
proper loading order. The final list of static dependencies is then automatically injected by the
framework in two ViewParams (/working/bwebforms/views/#viewparams)
variables:am_CssViewDependecies and am_JsViewDependecies.

Beautiful webForms View Templates utilize the aformentioned variables to render the HTML
code required to load the associated static files.

Two Velocity macros have been designed to handle this task:

These macros combine the contents of the variables am_CssViewDependecies and am_JsViewDependecies
with the list of dependencies specified as macro arguments (which are typically dependencies
specific to View Template (/working/bwebforms/views/#beautiful-webforms-view-templates))
to calculate the final list of static resources that must be loaded (producing at the same time
the relevant HTML code).

E.g.

•

•
•

["v2/css/select2/select2-bootstrap","3.5.4", [["v2/css/select2/select2","3.5.4"]]]

#macro(bwfJsResources $resList $blackList)
#macro(bwfCssResources $resList $blackList)

$blacklist resources not to be loaded

It is sometimes desirable that the static resources that need to be loaded to satisfy a widget's dependency are not
actually loaded, for example because they have been replaced by other resources already loaded by the View

Template (/working/bwebforms/views/#beautiful-webforms-view-templates), in these cases it is possible to pass to
the above mentioned macros an additional optional list of resources not to be loaded.

269 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/working/bwebforms/views/#viewparams
/working/bwebforms/views/#viewparams
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates

There are situations in which it is necessary to load multiple views dependecies when a
WebForm is rendered:

It is necessary whenever the WebForms can programmatically swithc view (e.g. a Webform
organized in tabs);
It is necessary whenever the WebForm's View makes use of SubViews widgets;

In these cases it is possibile to use the Content Script forms.addResourceDependencies API in the view
OnLoad (/working/bwebforms/views/#custom-logic-execution-hooks-cleh) CLEH Script to force
the framework to also load static resources dependencies from other Views.

The above mentioned API accepts three parameters: forms.addResourceDependencies(boolean loadJS,
boolean loadCSS, String[] viewNames)

A boolean flag indicating if Javascript resources should be loaded;
A boolean flag indicating if CSS resources should be loaded;
An optional list of Views from where to load dependecies from, if not specified resources
will be loaded for all the Views associated with the parent Form Template object;

#bwfCssResources([
 ['v2/css/am/am_form', "2.0.0"]
 ,['v2/css/font-awesome.min', "0.0.0"]
 ,['v2/css/metro-bootstrap.min', "0.0.0"]
 ,['v2/css/am/am_gridTable', "2.0.0"]
 ,["v2/css/select2/select2-bootstrap","3.5.4",
 [
 ["v2/css/select2/select2","3.5.4"]
]
]
],
[["v2/css/bootstrap.min","3.3.6"]])

•

•

•
•
•

View Names

Prior to Module Suite version 2.7 (/releasenotes/2_0_0/) Views names had to be specified in single quotes.

E.g.

Starting with Module Suite version 2.7 (/releasenotes/2_0_0/) Views names have be specified without quotes.

E.g.

forms.addResourceDependencies(true, true, "'View2'", "'View3'")

forms.addResourceDependencies(true, true, "View2", "View3")

Performances-tips: Always load the minimum amout of resources necessary

When a Beautiful WebForm View is created the framework automatically injects in the OnLoad (/working/

bwebforms/views/#custom-logic-execution-hooks-cleh) CLEH Script the code required to load static resource

270 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh

Widgets libraries¶

A Widgets library is defined as an extensible set of Widgets that can be used through the drag
& drop visual editor (FormBuilder). To simplify the navigation, the widgets are arranged in
families of objects having similar functionalities. Widgets within the same library use the same
initialization mechanism, as far as the JavaScript and CSS frameworks are concerned. Whenever
it is necessary or convenient to introduce breaking changes, in the way in which the widgets are
defined or in the way in which the widgets are managed, a new library is released.

Widget Library V1¶

This is the first version of the widget library shipped with the first version of Module Suite. This
widget library has been retired and is no longer supported since Module Suite version 2.6 (/

dependecies from all the other views beloging to the same parent Form Template object. This code works well and
has no impact on the performance of WebForm rendering, in most cases because Form Templates usually have very

few associated views. However , there are situations in which this behaviour is not desirable (e.g. the Form Template
contains many indipendent Views, the Form Template contains non active views etc..). loading static resource
dependecies from other Views when unnecessary could be expensive and even lead to hardly detectable errors (e.g.
a view in the template uses a different version of the widget library).
It's highly recommended, if your Form Template contains more than one view, to review the code automatically

injected by the framework and modify it by passing to the forms.addResourceDependencies API (line 3) the list of
Views from which it is actually necessary to load the resources.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

form.viewParams.ajaxEnabled=true
if(form.viewParams.ajaxEnabled && !form.viewParams.isResourcesInit){
 forms.addResourceDependencies(form, true, true)
 form.viewParams.isResourcesInit = true
}
if (form.isFirstLoad()){
 //Code to be executed on first load only
 // es. form.myField.value = 'my value'

}
else{

}

No need to update

Beautiful WebForms is always shipped with a copy of all still supported previous libraries. When a new library is
issued, customers are not required to immediatelly upgrade their views to it. They are free to keep working with
previous widget libraries.

Do not mix libraries

Given the nature of the differences between different libraries it is of highly recommended not to use widgets on
different libraries in the same view. Mixing widgets from different libraries can lead to unpredictable results or
errors.

271 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/

releasenotes/2_6_0/). View Templates designed to work with library V1 are not compatible with
any other library. Do not use other libraries' widgets with these View Templates.

Widget Library V2¶

This version of the widget library was first introduced with Module Suite 2.0 (/releasenotes/
2_0_0/) and is still fully supported. This library is the first using the concept of static resources
management. View templates leveraging this library loads their static resource dependencies
through standard HTML tags <link> and <script>. The actual HTML code required to load
resources is produced by the two Velocity macros (bwfCssResources and bwfJsResources)
mentioned in the static resources management paragraph. View Templates designed to work
with library V2 are not compatible with any other library. Do not use other libraries' widgets
with these View Templates.

Widgets of library V2 have two additional model properties: jsdependencies and
cssdependencies, they represent the list of static javascript and css resources the widget
depends on:

The definition of a static-resource dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file
the version of the resource to load (a string formatted as "Major.Minor.Revision")
an optional list of dependency definitions for static resources this library depends on

E.g.

Widget Library V3¶

This version of the widget library was first introduced with Module Suite 2.4 (/releasenotes/
2_4_0/) and is still fully supported. This library revised the concept of static resources
management. View templates leveraging this library loads their static resource dependencies
through standard HTML tags as far as CSS resources are concerned and a JavaScript file and
module loader Require JS (https://requirejs.org/) for Javascript resources. The actual HTML code
required to load CSS resources is produced by the the Velocity macro (bwfCssResources)
mentioned in the static resources management paragraph. View Templates designed to work
with library V3 are not compatible with any other library. Do not use other libraries' widgets
with these View Templates.

Widgets of library V3 have two additional model properties: jsdependencies and
cssdependencies, they represent the list of static javascript and css resources the widget
depends on:

•

•
•

...
jsdependencies:[["v2/css/select2/select2-bootstrap","3.5.4", [["v2/css/select2/select2","3.5.4"]]
...

272 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
https://requirejs.org/
https://requirejs.org/

CSS dependecies

The definition of a static-resource CSS dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file
the version of the resource to load (a string formatted as "Major.Minor.Revision")
an optional list of dependency definitions for static resources this library depends on

E.g.

JS dependecies

The definition of a static-resource JS dependency is represented by a list of three elements:

the reltaive 2 path to the static Javascript bundle containing the modules to be loaded
the version of above mentioned bundle (a string formatted as "Major.Minor.Revision")
the list of module that are part of the bundle (modules are defined by a list made of their
name and version)

Widget Library V4¶

This version of the widget library was first introduced with Module Suite 2.6 (/releasenotes/
2_6_0/) and is still fully supported. This library it's an evolution of the previous iteration (library
V3) which significantly increases the compatibility with standard Smart View UI. View templates
leveraging this library loads their static resource dependencies through standard HTML tags as
far as CSS resources are concerned and a JavaScript file and module loader Require JS (https://
requirejs.org/) for Javascript resources, which is the same AMD library used by native Content
Server Smart View framework. The actual HTML code required to load CSS resources is produced
by the the Velocity macro (bwfCssResources) mentioned in the static resources management
paragraph. View Templates designed to work with library V4 are not compatible with any other
library. Do not use other libraries' widgets with these View Templates.

Widgets of library V4 have two additional model properties: jsdependencies and
cssdependencies, they represent the list of static javascript and css resources the widget
depends on:

•

•
•

...
"cssdependencies":[
 ["v3/js/handsontable/handsontable.full","4.0.0", [["v3/js/handsontable/pikaday","1.4.0"]]]
 ,["v3/css/select2/select2","3.5.4"]
]
...

•

•
•

...
"jsdependencies":[
 ["v3/js/handsontable/am_init","1.0.0",[["Handsontable","4.0.0"], ["pikaday","1.4.0"], ["numbro","2.0.6"
]
...

273 Widgets

Copyright © 2013-2020 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_6_0/
https://requirejs.org/
https://requirejs.org/
https://requirejs.org/
https://requirejs.org/

CSS dependecies

The definition of a static-resource CSS dependency is represented by a list of three elements:

the reltaive 3 path to the static resource file
the version of the resource to load (a string formatted as "Major.Minor.Revision")
an optional list of dependency definitions for static resources this library depends on

E.g.

JS dependecies

The definition of a static-resource JS dependency is represented by a list of three elements:

the name of the Javascript bundle containing the modules to be loaded, the bundles and
the names of the modules no longer contain references to the name of the library
version
the version of above mentioned bundle (a string formatted as "Major.Minor.Revision")
the list of module that are part of the bundle (modules are defined by a list made of their
name and version)

FormBuilder acts as a Model View Controller framework with respect to BWF Widgets

Paths are relative to the folder /support/ansbwebform/lib

Paths are relative to the folder /support/ansbwebform/lib/v4, paths are defined in the View Template through

Velocity expressions

•

•
•

...
"cssdependencies":[
 ["amui/handsontable.full","4.0.0", [["amui/pikaday","1.4.0"]]]
 ,["amui/select2/select2","3.5.4"]
]
...

•

•
•

...
"jsdependencies":[
 ["bwf/handsontable/am_init","1.0.0"]
]
...

1.

2.

3.

274 Widgets

Copyright © 2013-2020 AnswerModules Sagl

Extending BWF

Content Script Volume¶

As for Content Script, Beautiful WebForms makes use of the Content Script Volume to store a
set of objects necessary for the correct operation of the framework. These object are stored in
specific containers, which will be covered on the following sections:

CSFormTemplates

CSFormSnippets

CSServices

CSScriptSnippets

CSServices¶

The CSServices (/working/contentscript/rest/) container is dedicated to Content Scripts that
should be accessible as REST services, and has been covered in the previous sections.

Content Script REST services are somehow related to Beautiful WebForms in that some
components used to build forms (essentially, the ones with AJAX capabilities) make use of these
services to work correctly.

An example is the getuserbyname REST service, which backs the user selection components
available in the form builder.

CSFormTemplates¶

The CSFormTemplates container is dedicated to HTML templates associated to Beautiful
WebForms Views.

•

•

•

•

275 Extending BWF

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/rest/
/working/contentscript/rest/
/working/contentscript/rest/

The templates are essentially Velocity HTML templates. A placeholder expression indicating
where the actual Form Fieldset should be placed, this should usually be present in all Beautiful
WebForms Templates.

New templates added to this folder will automatically be available in the template selection
dropdown menu accessible from the Beautiful WebForms Views Specific Properties tab.

CSFormSnippets¶

The CSFormSnippets container is dedicated to the libraries of components that are available to
build Beautiful WebForms views.

The CSFormSnippets container is organized on two levels: the first level is a container and
identifies the Component Family, while at the second level there are the actual components.

New component families and components created in this container will automatically be
available to the developer in the Beautiful WebForms Form Builder tool.

276 Extending BWF

Copyright © 2013-2020 AnswerModules Sagl

Embed into Smart View¶

Why?¶

The main purpose of embedding BWF views into Smart View's tiles is to leverage the BWF
framework as a primary input mechanism for your next EIM applications. Integrating BWF into
Smart View wont just enable you to collect and validate user's input but also to perform
complex actions and surface the most relevant business information in highly interactive
dashboards.

Create an embeddable WebForms¶

Creating an embeddable webforms is not different from creating any other webform on the
system. The steps are:

Create a Form Template object•

277 Embed into Smart View¶

Copyright © 2013-2020 AnswerModules Sagl

Create a Beautiful WebForm View view associated to the Form Template created in the
previous step
Using the Beautiful WebForms Form Builder define your form (structure and layout)

Create a standard Content Server Form object and associate it to the previously created
Form Template and Beautiful WebFomr View

How to publish a Webform into a Smart View
perspective¶

In order to publish a WebForm in a Smart View perspective's tile you need either:

or

ModuleSuite Smart Pages is installed¶

If the ModuleSuite Smart Pages is installed on your system you will be able to leverage the tight
integration between ModuleSuite and the OTCS Smart View in order to add WebForms in
perspective's tiles.

•

•

The embeddable view template

What makes a Beautiful WebForms view embeddable into the Smart View is the usage of the V3:SmartView
Embeddable view template

•

ModuleSuite Smart Pages is installed

A Content Script object (for managing the server side initialization of the form)

An AnswerModules ModuleSuite:Content Script Result perspective tile, configured to use the above script as
datasource

1.

2.

ModuleSuite Smart Pages is not installed

A Content Script object (to mange the server side initialization of the form)
A WebReport to encapsulate the above script execution

An Content Intelligence:HTML WebReport perspective tile, configured to use the above script as Webreport
as datasource

1.
2.

3.

278 Embed into Smart View¶

Copyright © 2013-2020 AnswerModules Sagl

../../../working/bwebforms/editor/

In this case the minimum Content Script required for managing the server side initialization of
the form will be:

The configuration of the associated AnswerModules ModuleSuite:Content Script Result will be
as simple as:

ModuleSuite Smart Pages is not installed¶

If the ModuleSuite Smart Pages is not installed on your system you will not be able to leverage
the tight integration between ModuleSuite and the OTCS Smart View in order to add WebForms
in perspective's tiles, thus you will need an additional WebReport object in order to
encapsulate the execution of the Content Script data source.

In this case the minimum Content Script required for managing the server side initialization of
the form will be:

def formNode = docman.getNodeByPath("Path:To:Your:Form")
form = formNode.getFormInfo()
view = formNode.view
form.viewParams.uiParentID = params.uiParentID //The perspective current space

json([
 output:view.renderView(binding, form),
 widgetConfig:[
 reloadCommands:["someCommand"],
 tileContentClasses:"am-whitebckg",
 tileLayoutClasses:"am-whitebckg"
]
]
)

279 Embed into Smart View¶

Copyright © 2013-2020 AnswerModules Sagl

While the minimum WebReport required to encapsulate the execution of the above script will
be:

The configuration of the associated Content Intelligence:HTML WebReport will be as simple as:

Beautiful Webforms views updater¶

What is it?¶

The Beautiful Webforms View Updater (BWVU) is an utility designed to simplify and automate
the process of upgrading a webform view designed with a previous version of Module Suite.
Module Suite IDEs allows you to keep working with the views created using the widget library
shipped with a previous version of Module Suite, nevertheless, in order to leverage the widgets
introduced in a newer version of the widget's library an upgrade is required.

This tool aims to simplify the upgrade procedure.

gui.gui = false
def formNode = docman.getNodeByPath("Path:To:Your:Form")
form = formNode.getFormInfo()
view = formNode.view
out << view.renderView(binding, form)

[LL_REPTAG_'123456' RUNCS /] [// Script ID
[LL_WEBREPORT_STARTROW /]
[LL_WEBREPORT_ENDROW /]

280 Beautiful Webforms views updater¶

Copyright © 2013-2020 AnswerModules Sagl

Tool setup¶

Installing the BWVU, is a straight forward procedure which consists of just two steps:

BWVU dependecies

BWVU is a Module Suite application that leverage extensively the jdbc extension package. It requires you to have it
installed and to have the proper JDBC drivers for your Content Server DBMS deployed in the OTHOME/module/
anscontentscript_X_y_Z/amlib/jdbc folder.

 Run the BWVU installer on a server on which both Content Server and Module Suite have
been installed and configured. The installation program will ask for the location of the
Content Server's installation folder.



Cluster installation

281 Beautiful Webforms views updater¶

Copyright © 2013-2020 AnswerModules Sagl

Tool usage¶

The main entry point for using the tool is the webform Beautiful WebForms Updater Form
created in the OTCS Enterprise Workspace in the BWF Updater folder .

If you are working with a cluster and want to be able to run the tool from any server of the cluster, you should
perform this step on each one of them

 Run the installation script http://your.contentsuite.com/otcs/cs.exe?
func=amcs.executeadmcs&script=bwfupdater_install.cs (http://your.contentsuite.com/
otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs) and click "Install" :

The application will perform some pre-installation checks and will eventually inform you
regarding errors that prevent the successful completion of the installation procedure.



Installation completed

If the installation was completed without errors, you should see a message like the one below

282 Beautiful Webforms views updater¶

Copyright © 2013-2020 AnswerModules Sagl

http://your.contentsuite.com/otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs
http://your.contentsuite.com/otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs
http://your.contentsuite.com/otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs
http://your.contentsuite.com/otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs
http://your.contentsuite.com/otcs/cs.exe?func=amcs.executeadmcs&script=bwfupdater_install.cs

Running the above mentioned WebForm you'll enter the tool's dashboard. From here you can
either review the results of previous updates or, by clicking on the Update button, run a new
one.

Before trying to perform the update of an existing Beautiful WebForms view you have to update
the widgets library version using the the FormBuilder (e.g. from V1 to V3). After having changed
the widgets library and saved the modified view you can come back to the BWVU tool.

Once the view's widgets library version is up to date you can execute the desired upgrade using
the BWVU tool, simply enter the view unique id (DataId) and click Update.

The result of the update together with the detailed list of operations performed will be

Move and rename

Upon import is completed, the root folder and tool objects (WebForms and Form Template) can be renamed and
moved according to your needs without problems.

283 Beautiful Webforms views updater¶

Copyright © 2013-2020 AnswerModules Sagl

available for review in the tools dashboard.

Extension: Mobile WebForms

What is it?¶

AnswerModules’ Mobile WebForms is both: - An add-on solution for CSP/xECM. - A functional
extension for Module Suite (AnswerModules’ core solution).

AnswerModules’ Mobile WebForms consists of three macro components:

AppWorks Mobile Application¶

Every Mobile WebForms is transformed into an AppWorks application so that it can be it
distributed to end-users’ devices through the AppWorks Gateway. This approach guarantees a

284 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

very high degree of flexibility in terms of controlling access to the mobile form as well as
governing the mobile form’s data security. By leveraging the AppWorks technology, a mobile
form’s lifecycle can be fully managed (versioning, fine-grain user distribution, etc..), support for
specific devices may be pre-defined and if necessary saved data could be remotely deleted
from a specific device.

Module Suite based extension for REST APIs¶

By extending the CSP/xECM REST APIs a dedicated endpoint for Mobile WebForms has been
created. The endpoint can be easily extended or adapted in order to effectively open a
potentially infinite number of use cases when it comes to how form data is utilized and
persisted once its synchronized onto CSP/xECM. Some possible scenarios for how the form data
can be utilized include: starting or updating a workflow, creating Connected Workspaces
programmatically, generating documents (PDF, Word, Excel, etc…), transmitting the data to
another system (i.e.: CRM, ERP, etc…), and much more.

Mobile WebForms Application Builder¶

This component allows to create new AppWorks applications in a matter of minutes starting
from an existing form. An intuitive wizard-like tool guides users in defining all the necessary
elements to transform a simple WebForm into a Mobile WebForms. A preview of the process can
be viewed at: https://youtu.be/xiBjPMAH-HU (https://youtu.be/xiBjPMAH-HU)

Mobile WebForms setup¶

Installing the Mobile WebForms application on your system is a straightforward procedure
made of a few simple steps.

Download the Mobile WebForms Installation Package. (You can download it from here)
Extract the contents of the zip file to a temporary location.
Copy the contents of the Mobile Components.zip in the <Content_Server_home> directory
and then restart the Content Server services.
Logon to the OpenText Content Server with an administrative account.
Create a folder that will contain the installation package.
Upload the mobileWebFormsXML.xml file, in the previously created folder.
Create a Content Script in the same location for importing the package in the system.
(please refer to the snippet below as a reference).

As administrator

The installation procedure must be performed using a user with administrative rights on the system (for example,

the administrator user)

•
•
•

•
•
•
•

285 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

https://youtu.be/xiBjPMAH-HU
https://youtu.be/xiBjPMAH-HU
../resources/Mobile_WebForms_Package.zip

The execution of the Content Script will generate a folder in the Enterprise Workspace named
“MobileWebForms” and will generate the application’s contents in it.

Using the tool¶

A Mobile WebForms application is composed of three main elements:

A form for inserting the information.
An end-point Content Script that will implement the logics to properly manage the data
upon synchronization from the OpenText AppWorks Gateway application.

 def source = docman.getNodeByName(self.parent, "mobileWebFormsXML.xml")
 def xmlFolder = docman.getNodeByName(self.parent, "Mobile WebForms")
 if(!xmlFolder){
 xmlFolder = admin.importXml(self.parent, source.content.content)
 }
 redirect "${url}/open/${docman.getNodeByName(xmlFolder, 'Install').ID}?scriptInstall=${self.ID}"

Pre-requisites

During the setup process the installer, will check if all the prerequisites are met. If the setup process notifies the
need of a missing extension package, install the package before continuing.

To install an extension package you can refer to the following guide: http://developer.answermodules.com/
manuals/current/installation/extpacks/ (http://developer.answermodules.com/manuals/current/installation/

extpacks/)

In the case the requested extension is the AnswerModules' Cache Extension Package then after the installation
some additional configuration will be needed.

To properly configure the AnswerModules’ Cache Extension Package refer to the below guide:

https://support.answermodules.com/portal/kb/articles/content-script-extension-cache (https://
support.answermodules.com/portal/kb/articles/content-script-extension-cache)

•
•

286 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache

An OpenText AppWorks Gateway application for distributing the application to the end
users.

Creating the form¶

The first step is the creation of the form that will be utilized to gather information from the end
users.

When editing the form's view with the Form Builder the widget library must be set to "Library
Mobile WebForms". As for the template to use there are two options under the "Library Mobile
WebForms" section:

Dev: this template offers the possibility to verify the look & feel of the form without the
need to deploy it on the OpenText AppWorks Gateway. This template should be only
utilized during the development phase or for debugging purposes.
White: this is template to be utilized when the application is ready to be deployed on the
OpenText AppWorks Gateway.

When editing a form's view with the Form Builder, the form's view will be pre-populated with
the widgets representing the elements inserted in the Form Template. A Mobile WebForms will
need to be designed using specific widgets coming from the Mobile WebForms Library, to do so
delete the self created widgets derived from the form template, verify that the Library Mobile
WebForms is selected, save the form's view and refresh the page. Once the page has refreshed
drag&drop the widgets from the left-hand side of the Form Builder to the form's view.

Implementing the Content Script end-point¶

When synchronizing the information back to Content Server, the Mobile WebForms application
will make a call to a Content Script.

•

•

•

287 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

For a detailed explanation on using AnswerModules' Content Scripts please refer to the
following guide: http://developer.answermodules.com/manuals/current/working/contentscript/
otcsobj/ (http://developer.answermodules.com/manuals/current/working/contentscript/
otcsobj/)

The Content Script must reside inside the CSServices folder within the Content Script Volume.
The script must contain all the business logic needed to properly manage the information that
is being synchronized from the OpenText Gateway application. The installation process will
create a default end-point called "mobileWebForms" please refer to it as a reference
implementation.

Building the OpenText AppWorks Gateway Application¶

To deploy the application on the OpenText AppWorks Gateway it will be necessary to prepare a
deployable package compliant with the OpenText AppWorks Gateway. The preparation of the
up-said package can be done via the Mobile WebForms application by opening the form
“Registered Applications”. The form can be found under
Enterprise\MobileWebForms\Application Builder\Builder

Once opened, the form will show the list of registered application. New applications can be
created by clicking on the "Create" button at the bottom of the page.

Clicking on the “Create” button will prompt the user for the application's details.

Application name

An icon for the application (to be shown as the application's icon on the mobile device)

A description (to be set as the application's description on the mobile device)

The remote end-point script name (called when synchronizing the form's data)

The Appworks Gateway version

The application’s version (When updating the application the version number must be
increased)

The related form

•

•

•

•

•

•

•

288 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/

The specific view to be used

Clicking the “Create” button will automatically create an appropriate folder structure containing
all the application's required objects

Once the application's structure has been created it will be possible to create an OpenText
AppWorks Gateway deployable package by clicking on the "Build" button.

To upload the application to the OpenText AppWorks Gateway, enter the path and the
authentication credentials of the destination OpenText AppWorks Gateway and click "connect".

•

289 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

Once connected to the OpenText AppWorks Gateway, the system will enable the user to deploy
the application. Clicking on the deploy icon will automatically upload, install and enable the
application on the OpenTextAppWorks Gateway.

To verify the correctness of the process access the OpenText AppWorks Gateway and verify that
in the "Installed" section the application to be distributed is present and enabled.

The complete tour:

OpenText AppWorks Gateway

No information will be provided for installing and properly configuring the OpenText AppWorks Gateway. For
installing ad configuring the OpenText AppWorks Gateway please refer to the official OpenText documentation.

290 Extension: Mobile WebForms

Copyright © 2013-2020 AnswerModules Sagl

Extension: Remote WebForms

What is it?¶

Remote Beautiful WebForm is an extension package for Script Console (/working/scriptconsole/
base/) that allows you to deploy a Beautiful WebForms powered webform created on Content
Server on the Script Console engine.

The main purpose of this extension is to simplify the process of gathering the contribution of
users that do not have access to Content Server and synchronize these information back on
Content Server. An other quite common scenario, is the off-line usage of Content Server
webforms: the possibility of accessing, through a locally deployed Script Console instance, a
copy of a Content Server webform, even when a connection with Content Server is not available.

In both the cases the information submitted through the remote webform are stored locally
within the Script Console to be later synchronize back towards Content Server.

Extension setup¶

Installing the remote-webform extension package on a Script Console instance, is a straight
forward procedure which consists of just two steps:

Run the Script Console master installer and install the Remotable WebForms extension
package

•

291 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

/working/scriptconsole/base/
/working/scriptconsole/base/
/working/scriptconsole/base/
/working/scriptconsole/base/

Copy all the static resources from the Beautiful WebForms Support Module in:

<Script Console Home>\config\img\ansbwebform

Create remote package¶

Beautiful WebForms deployable packages can be created either programmatically, using the
Content Script forms service or manually, through the Beautiful Webforms Studio application.

•

292 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

Using forms.createExPackage API¶

Content Script forms.createExPackage API can be used to programmatically create a deployable
Beautiful WebForms remote package. The API can be used from within a Beautiful WebForms
View CLEH script, or from any other Content Script object.

In most of the cases, if used within a stand-alone script, this API is used in conjunction with
forms.getFormInfo or forms.listFormData APIs.

Using Beautiful Webforms Studio¶

Beautiful Webforms Studio which can be found at the following location: Content Script
Volume:CSTools:Beautiful WebForm Studio

Properly initialize the form object

It's important that you keep in mind that when the form object is loaded using the form service it is not initialized.
You can either initialize it as part of your script or rely on it's OnLoad CLEH for its proper initialization. Here below
an example of how properly initialize the form object:

Minimum initialization required

Initialization through the OnLoad script (if any)

def formNode= docman.getNodeByPath("Path:to:your:form")
form = formNode.getFormInfo()
forms.addResourceDependencies(form, true, true)

def formNode= docman.getNodeByPath("Path:to:your:form")

form = formNode.getFormInfo()
def bwfView = docman.getNode(form.amViewId)
def onLoad = bwfView.childrenFast.find{it.name == "OnLoad"}

if(onLoad){
 docman.runContentScript(onLoad, binding)
}

forms.createExPackage(
 Form form, // The form to export
 String name, // An alpha-numeric identifier for the package to be created
 String instructions, // The instruction to be displayed to help the user filling in the form
 String nextUrl, // Where to redirect the user upon submission
 Date validUpTo, // A date after which the form should no longer be available (can be null)
 List<String> viewsToExport, // The names of the views you want to export as part of the package
 // if null all the views will be exported
 String pin, // An optional pin that can be used to protect the access to the fo
 CSDocument[] arrayOfDocuments // An optional list of documents to be exported as 'attachments'
)

293 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

Among the possibilities offered the studio application can help you leveraging the
forms.createExPackage through a simplified visual wizard. The first step is to select Export Remote
Form among the available actions.

than you'll be asked for a space on Content Server to be used as the wizard workspace (where
objects and content will be created):

finally you will be asked about export configuration parameters

Form: the form object to be exported

Title: the form's title as it will be displayed on the script console default dashboard

Name: the export package name (should be an alpha-numeric value)

Description: the form's description as it will be displayed on the script console default
dashboard

PIN: an optional PIN to be used in order to protect un-authorized access to the form on
the console

Redirect: an URL where to redirect user's navigation upon submission

View: an optional list of views names to be exported

Attachment(s): an optional list of documents to be exported

•

•

•

•

•

•

•

•

294 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

upon submission the export package file will be created in the selected workspace.

How to deploy a Beautiful WebForms remote form
package¶

The Beautiful WebForms remote form package is actually a .zip archive containing all objects
necessary to the form (view files, scripts, templates, etc.).

You can manually extract its contents in a new folder inside:

<Script Console Home>\config\scripts\ext\forms\forms

for example:

<Script Console Home>\config\scripts\ext\forms\forms\myform

at this point, you should be able to access the form via the Script Console Dashboard, or via
direct URL.

Synchronize form data back to Content Server¶

Form data submitted on Script Console can be synchronized back to Content Server in different
ways which all are based on the same paradigm: the asynchronous exchange of information is
based on data files.

Data files can be moved from the Script Console to Content Server no matter which
transportation mechanism is used.

In the following paragraphs we will cover the most common scenarios.

Remote data pack files are produced on Script Console and sent over
to Content Server¶

Script Console and Content Server can be isolated

295 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

In this scenario a local script is executed (or scheduled) on the Script Console in order to
collect submitted data and prepare the exchange data files to be sent over Content Server.

The Remotable Beautiful WebForms extension for Script Console comes with several exemplar
scripts of this kind that can be found at the following location:

<Script Console Home>\config\scripts\ext\forms

E.g synchLocal.cs

In order to implement this scenario there is no need for the two systems to communicate each other.

import groovy.json.JsonSlurper
import groovy.io.FileType
import java.util.zip.ZipOutputStream
import java.util.zip.ZipEntry
formsAvailable = []
system = context.getAttribute("system")
formRepository = system.extensionRepositories.find{
 it.repoHome.name == 'forms'
}
formRepositoryDir = new File(formRepository.getAbsolutePath(), "forms")
formRepositoryDirLocal = new File(formRepository.getAbsolutePath(), "inout")
if(formRepositoryDir && formRepositoryDir.isDirectory()){
 def deleteFile = []
 formRepositoryDirLocal.eachFileRecurse(FileType.FILES){
 if(it.name.endsWith(".amf")){
 File newForm = new File(formRepositoryDir, it.name-'.amf')
 if(!newForm.mkdir()){
 return
 }
 def zipFile = new java.util.zip.ZipFile(it)
 zipFile.entries().each {
 ins = zipFile.getInputStream(it)
 new File(newForm, it.name) << ins
 ins.close()
 }
 zipFile.close();
 deleteFile << it
 }
 }
 deleteFile.each {
 it.delete()
 }
}
if (params.upload == 'true' && params.selform){
 list =[]
 list.addAll(params.selform)
 toBeDeleted = []
 list.each{ form->
 formRepositoryDir = new File(formRepository.getAbsolutePath(), "data/$form")
 if(formRepositoryDir && formRepositoryDir.isDirectory()){
 formRepositoryDir.eachFileRecurse(FileType.FILES){
 if(it.name == "data.amf"){
 File dataPack = it.getParentFile()
 String zipFileName = "${dataPack.name}.rpf"
 File zipFile = new File(new File(formRepository.getAbsolutePath(), "temp"), zipFileName
 ZipOutputStream zipOS = new ZipOutputStream(new FileOutputStream(zipFile))
 zapDir(dataPack.path, zipOS, dataPack.path)
 zipOS.close()
 zipFile.renameTo(new File(formRepositoryDirLocal, zipFile.name))
 toBeDeleted << dataPack
 }

296 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

If you want to schedule this kind of scripts to be automatically executed by the Script Console
you have to configure the job in the cs-console-schedulerConfiguration.xml file, which is a standard
Quartz scheduler configuration file. You should find a sample job in there.

Here below a configuration example:

 }
 }
 }
 toBeDeleted.each{
 it.deleteDir()
 }
}
def static zapDir(String dir2zip, ZipOutputStream zos, String stripDir) {
 File zipDir = new File(dir2zip)
 def dirList = zipDir.list()
 byte[] readBuffer = new byte[2156]
 int bytesIn = 0
 dirList.each {
 File f = new File(zipDir, it)
 if(f.isDirectory())
 zapDir(f.path, zos, stripDir)
 else {
 FileInputStream fis = new FileInputStream(f)
 ZipEntry anEntry = new ZipEntry(f.path.substring(stripDir.length()+1))
 zos.putNextEntry(anEntry)
 while((bytesIn = fis.read(readBuffer)) != -1) {
 zos.write(readBuffer, 0, bytesIn);
 }
 fis.close();
 }
 }
}
redirect params.nextUrl

<?xml version="1.0" encoding="UTF-8"?>
<job-scheduling-data
 xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData http://www.quartz-scheduler.org/xml/job
 version="1.8">
 <pre-processing-commands>
 <delete-jobs-in-group>*</delete-jobs-in-group> <!-- clear all jobs in scheduler -->
 <delete-triggers-in-group>*</delete-triggers-in-group> <!-- clear all triggers in scheduler -->
 </pre-processing-commands>
 <processing-directives>
 <!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), overwrite them -->
 <overwrite-existing-data>true</overwrite-existing-data>
 <!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), and over-write is false, ignore them rather then generating an error -->
 <ignore-duplicates>false</ignore-duplicates>
 </processing-directives>
 <schedule>
 <job>
 <name>PollJobSynchronization</name>
 <group>Synchronization</group>
 <job-class>com.answer.modules.cscript.console.scheduler.CommandLauncherJob</job-class>
 <job-data-map>
 <entry>
 <key>script</key>
 <value>ext/forms/synchLocal.cs</value>
 </entry>
 <entry>

297 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

Later on Content Server the data files are unpacked using the forms service from within a
Content Script that can be either manually executed or scheduled.

E.g.

 <key>system</key>
 <value>LOCAL</value>
 </entry>
 </job-data-map>
 </job>
 <trigger>
 <cron>
 <name>LaunchEvery1Minutes</name>
 <group>SynchronizationTriggerGroup</group>
 <job-name>PollJobSynchronization</job-name>
 <job-group>Synchronization</job-group>
 <start-time>2010-02-09T12:26:00.0</start-time>
 <end-time>2020-02-09T12:26:00.0</end-time>
 <misfire-instruction>MISFIRE_INSTRUCTION_SMART_POLICY</misfire-instruction>
 <cron-expression>0 * * ? * *</cron-expression>
 <time-zone>America/Los_Angeles</time-zone>
 </cron>
 </trigger>
 </schedule>
</job-scheduling-data>

// remPack is a data pack file, how this file was obtained is not relevant.
// It may have been fetched from an email folder, a ftp server, a shared folder a cloud service,
// or even uploaded on Content Server using web-services, etc...
def packList = forms.getExPackageContent(remPack) // returns a Map<String, CSResource>

if(packList."data.amf"){
 def res = packList.find{it.key == "data.amf"}.value
 def form = forms.deserializeForm(res.content.getText("UTF-8"))

 // The form object can be used for various purposes
 // Submitting the data back to Content Server
 forms.submitForm(form)

 // Starting a workflow
 def damageInvestigation = docman.getNodeByPath("Fleet Management:Workflows:Damage Ingestigation Map"

 def inst = forms.startWorkFlow(damageInvestigation, form, "Form", "Damage Ingestigation - Veichle: ${form.number.

 // Seding on a running workflow
 def task = workflow.getWorkFlowTask(form.getAmWorkID(), form.getAmSubWorkID(), form.getAmTaskID())

 forms.updateWorkFlowForm(
 task, //The task
 "Form Name", //The form name
 form, //The form object
 true // True if the task should be sent on
)

}

298 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

Form data are submitted directly from Script Console¶

This scenario can be implemented executing or scheduling a script similar to the one reported
here below on the Script Console:

If you want to schedule this kind of scripts to be automatically executed by the Script Console
you have to configure the job in the cs-console-schedulerConfiguration.xml file, which is a standard
Quartz scheduler configuration file. You should find a sample job in there.

Here below a configuration example:

Script Console and Content Server can't be isolated

In order to implement this scenario the two systems shall be able to communicate each other.

import groovy.io.FileType

log.debug("Running Your Form Synch Job")

formsAvailable = []
system = context.get("system")
formRepository = system.extensionRepositories.find{
 it.repoHome.name == 'forms'
}

//Synch up
formRepositoryDirParent = new File(formRepository.getAbsolutePath(), "data")
def toBeDeleted = []
formRepositoryDirParent.eachFileRecurse(FileType.DIRECTORIES){ formRepositoryDir->

 if(("yourform").equalsIgnoreCase(formRepositoryDir.name)){
 if(formRepositoryDir && formRepositoryDir.isDirectory()){
 formRepositoryDir.eachFileRecurse(FileType.FILES){
 if(it.name == "data.amf"){
 formObj = forms.deserializeForm(it.text)
 File dataPack = it.getParentFile()
 try{
 forms.submitForm(formObj)
 toBeDeleted << dataPack
 }catch(e){
 log.error("Unable to synch data back to OTCS",e)
 }
 }
 }
 }
 }
}
toBeDeleted.each{
 it.deleteDir()
}

<?xml version="1.0" encoding="UTF-8"?>
<job-scheduling-data
 xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData http://www.quartz-scheduler.org/xml/job
 version="1.8">
 <pre-processing-commands>

299 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

 <delete-jobs-in-group>*</delete-jobs-in-group> <!-- clear all jobs in scheduler -->
 <delete-triggers-in-group>*</delete-triggers-in-group> <!-- clear all triggers in scheduler -->
 </pre-processing-commands>
 <processing-directives>
 <!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), overwrite them -->
 <overwrite-existing-data>true</overwrite-existing-data>
 <!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), and over-write is false, ignore them rather then generating an error -->
 <ignore-duplicates>false</ignore-duplicates>
 </processing-directives>
 <schedule>
 <job>
 <name>PollJobSynchronization</name>
 <group>Synchronization</group>
 <job-class>com.answer.modules.cscript.console.scheduler.CommandLauncherJob</job-class>
 <job-data-map>
 <entry>
 <key>script</key>
 <value>ext/forms/submitMyFormLocal.cs</value>
 </entry>
 <entry>
 <key>system</key>
 <value>LOCAL</value>
 </entry>
 </job-data-map>
 </job>
 <trigger>
 <cron>
 <name>LaunchEvery1Minutes</name>
 <group>SynchronizationTriggerGroup</group>
 <job-name>PollJobSynchronization</job-name>
 <job-group>Synchronization</job-group>
 <start-time>2010-02-09T12:26:00.0</start-time>
 <end-time>2020-02-09T12:26:00.0</end-time>
 <misfire-instruction>MISFIRE_INSTRUCTION_SMART_POLICY</misfire-instruction>
 <cron-expression>0 * * ? * *</cron-expression>
 <time-zone>America/Los_Angeles</time-zone>
 </cron>
 </trigger>
 </schedule>
</job-scheduling-data>

300 Extension: Remote WebForms

Copyright © 2013-2020 AnswerModules Sagl

Smart Pages

Working with Smart Pages

This guide introduces the basic functionalities related to the Module Suite Smart Pages.

Basic concepts¶

The Module Suite Smart Pages is an optional extension to Module Suite that introduces new
features for those users that need an extra level of flexibility when creating customized SmartUI
perspectives, and, more broadly, for those who prefer using the SmartUI in place of the Classic
UI for their Content Server applications.

The extension includes the following components:

A new set of SmartUI tiles, available within the Perspective Builder Widget Library
A set of Content Script snippets that showcase how to create datasources for the SmartUI
tiles
A collection of Beautiful WebForms templates and related resources that enable
embedding of Beautiful WebForms views within a SmartUI perspective

•
•

•

301 Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Module Suite Tiles in the Widget Library¶

The following tiles are available in AnswerModules Module Suite section:

Content Script Result
Content Script Tile Chart
Content Script Tile Links
Content Script Tile Tree
Content Script Node Table
Content Script Tile News
Content Script Tile Tiles

Tile Configuration¶

Module Suite tiles share some common configuration options, while other options are specific
to single tiles.

Common options include the configuration of the external frame (header, scrolling content,
title, icon) and the configuration of the tile's Data Source. All Module Suite tiles require to
specify a Content Script object that will be executed when the tile content is created. This script
acts as a Data Source for the tile, and allows to make its content dynamic.

Through the configuration, it is also possible to pass additional parameters to the script. The
parameter will be available to the developer within the params variable.

•
•
•
•
•
•
•

302 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

When configuring the tile's icon, two different approaches are possible:

specify a CSS style class to apply to the icon element. This should define the rules
needed to apply the desired icon.
specify the name (and color scheme) of the desired icon among the ones available in the
Module Suite icon set. See the icon reference cheat sheet for a full list of options.

Tile: Content Script Result¶

The Content Script Result is a general-purpose tile that can be used to inject any output
generated by a Content Script Data source into a SmartUI perspective.

•

•

303 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Tile: Content Script Tile Chart¶

The Content Script Tile Chart is a tile who's purpose is to create interactive charts within the
SmartUI. The data shown in the charts will be provided by a Content Script data source.

304 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Chart tiles leverage two different javascript libraries:

Chartist (supported for backward compatibility)
Chart.js (suggested)

Depending on the selected chart type, the appropriate configuration has to be provided in JSON
format. The following sample configuration produces the pie chart in the image above.

•
•

def rand = new Random()

if(params.widgetConfig){

 json(widgetConfig:[
 reloadCommands:["updateChart"],
 html:"""

<small>Move the mouse over the chart for triggering data-reload</small>
<script>
 csui.onReady2([

305 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 "csui/lib/jquery",
 "csui/lib/underscore",
 "csui/lib/radio"],
 function(jQ, _, Radio){

 //Get the page message bus
 var amChannel = Radio.channel('ampagenotify');

 //Get the chart
 var chart = amChannel.request("ampages:myChart");

 var canvas = jQ("#myChart");
 canvas.unbind("click");
 canvas.on("click", function (evt) {
 var activePoints = chart.getElementsAtEvent(evt);
 var vals = _.map(_.pluck(_.filter(chart.legend.legendItems, function(it){ return it.hidden==f
 if(!_.isUndefined(activePoints[0])){
 var chartData = activePoints[0]['_chart'].config.data;
 var idx = activePoints[0]['_index'];

 var label = chartData.labels[idx];
 var value = chartData.datasets[0].data[idx];
 amChannel.trigger("updateChart", [{name:"where_type", value:label}]);

 } else {
 amChannel.trigger("updateChart", [{name:"where_type", value:vals}]);
 }
 });

 canvas.hover(function(){
 var self = jQ(this);
 //jQ(".myChartLoader").removeClass("binf-hidden");
 amChannel.trigger("updateChart", [{name:"filter", value:"first"}]);
 });
 });
</script>"""
])
}else{

 json([

 type:"bar",
 data:
 [

 labels: ["red", "green"],
 datasets: [

 [
 label: "My First dataset",
 backgroundColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor
 borderColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}"
 data: [rand.nextInt(100), rand.nextInt(100)],

],
 [
 label: "My Second dataset",
 borderColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}"
 backgroundColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor
 data: [rand.nextInt(100), rand.nextInt(100)],

]
]
],
 options: [
 maintainAspectRatio: false,
 title: [
 display: true,

306 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Tile: Content Script Tile Tiles¶

The Content Script Tile Tiles is a tile meant to create a customizable list of clickable links and
HTML Tiles. The data controlling the links is provided by the backing Content Script data source.

 text: 'myChart',
 position: 'left'
],
 legend: [
 display: true,
 position: 'top'
],
 scales: [
 yAxes: [
 [
 ticks: [
 beginAtZero:true
]
]
]
]
]
])
}

307 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

The following Content Script sample configuration produces the Links tile shown above.

if(params.widgetConfig){

 json(widgetConfig : [
 reloadCommands : ["updateTiles"], // The widget will be refreshed when this command is executed
 html : """

<div style="padding:20px; background-color:white;margin-bottom:10px" >
Move the mouse over the tiles for triggering data-reload, or try to change the value of the first tile using the inpu

<input class="customField" name="customField" value="Open" type="text">
</div>

<script>
 csui.onReady2([
 "csui/lib/jquery",
 "csui/lib/underscore",
 "csui/lib/radio"],
 function(jQ, _, Radio){

308 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 // Get the page message bus

 var amChannel = Radio.channel('ampagenotify');

 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });

 jQ(".am-tile-linkstiles-cell").hover(function(){
 var self = jQ(this);
 amChannel.trigger("updateTiles", [{name:"customValue", value:"Test"}]); //(1)
 });

 jQ(".customField").change(function(){
 var self = jQ(this);
 amChannel.trigger("updateTiles", [{name:"customValue", value:self.val()}]); //(1)
 });
 });
</script>"""
])
} else {

json(
 data : [
 styleclass : "myStyleClass",
 rows : [
 [// First row
 styleclass : "myStyleClass",
 size : 0, // The relative height of this row compared to other rows (default : 1)
 tiles : [
 [// First Tile
 size : 1, // The relative size of this tile compared to others in the row (default : 1)
 styleclass : "myStyleClass",

 html : """<div style="height: 100%;
 text-align: center;
 font-weight: lighter;
 padding: 5px;
 font-size: 150%;
 color: #fff;
 background-color: #090e2c;"> Sample Tiles Widget </div>"""
]
]
],
 [// Second row
 styleclass : "myStyleClass",
 size : 1, // The relative height of this row compared to other rows (default : 1)
 tiles : [
 [// First Tile
 //type : 'red',
 size : 2, // The relative size of this tile compared to others in the row (default : 1)
 styleclass : "myStyleClass",
 action : "navigate", // Will trigger a browse action of the current view
 params : "2000", // The DataID of the node you wanto to navigate to

 front : [
 //style : 'color:#b20000;background-color:#fff;',
 icon : "${img}csui/themes/carbonfiber/image/icons/header-folder.svg", //Icons to be displ
 body : params.customValue ?: "Enterprise Workspace",
 body_text_align : 'right', // left, center, right (default)
 body_text_size : 'small' // small (90%), normal (100%), large (200%), jumbo (300%)

],

 back : [
 icon : "${img}csui/themes/carbonfiber/image/icons/circle_arrow_right.svg"
 body : "Open",
]
],

309 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 [// Second Tile
 //type : 'red',
 size : 2, // The relative size of this tile compared to others in the row (default : 1)
 styleclass : "myStyleClass",
 action : "navigate", // Will trigger a browse action of the current view
 params : docman.getPersonalWS().ID, // The DataID of the node you wanto to navigate to

 front : [
 //style : 'color:#b20000;background-color:#fff;',
 icon : "${img}csui/themes/carbonfiber/image/icons/header-folder.svg", //Icons to be displ
 body : "Personal Workspace",
 body_text_align : 'right', // left, center, right (default)
 body_text_size : 'small' // small (90%), normal (100%), large (200%), jumbo (300%)

],

 back : [
 style : 'color:#b20000; background-color:#fff;', // Custom stiling for this card
 icon : "${img}csui/themes/carbonfiber/image/icons/circle_arrow_right.svg"
 body : "Open",
]
],
 [// Third Tile
 type : 'gold',
 size : 1, // The relative size of this tile compared to others in the row (default : 1)
 styleclass : "myStyleClass",
 action : "link", //Just a standard link
 params : "http://www.answermodules.com", //The URL where to redirect the user
 newtab : true, //True if the URL should be opened in a new browser tab
 front : [
 //style : 'color:#b20000;background-color:#fff;',
 //icon : "${img}csui/themes/carbonfiber/image/icons/header-folder.svg", //Icons to be dis
 body : "AM Website",
 body_text_align : 'center', // left, center, right (default)
 body_text_size : 'small' // small (90%), normal (100%), large (200%), jumbo (300%)

],

 back : [
 style : 'color:#b20000; background-color:#fff;', // Custom stiling for this card
 icon : "${img}csui/themes/carbonfiber/image/icons/circle_arrow_right.svg"
 //body : "Go",
]
]
]
],

 [
 tiles : [

 [size : 2,
 newtab : true, //True if the URL should be opened in a new browser tab
 type : 'orange', // Available types: red, green, blue, orange, teal, gold, purple
 front : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/task.svg"
 body : """25 open
tasks"""
 body_text_align : 'right', // left, center, right (default)
 body_text_size : 'jumbo' // small (90%), normal (100%), large (200%), jumbo (300%)
],
 back : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/task.svg"
 title : "Open Tasks"
]
],
 [
 size : 1,
 type : 'red',
 html : """ <p style="padding:5px;background-color:#fff; color:#666; height:100%;"> Some custo
],

310 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

]
],

 [
 tiles : [

 [size : 2,
 type : 'blue',
 front : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/stats_column_chart.svg"
 body : '$ 670 K',
 body_text_size : 'large' // small (90%), normal (100%), large (200%), jumbo (300%)
],
 back : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/stats_column_chart.svg"
 body : "Total sales last quarter",
]

],
 [
 size : 1,
 command : "smartPage", //The SmartPage(s) to notify
 action : "updatePage", //The action to execute
 params : "2000",//The action's parameter
 newtab : false,
 type : 'green',
 front : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/stock_market.svg"
 body : "Stock",
 title : "No Back Card"
]
],
]
],

 [
 tiles : [

 [size : 2,
 type : 'purple',
 front : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/profit.svg"
 body : '+ 253%',
 body_text_size : 'large' // small (90%), normal (100%), large (200%), jumbo (300%)
],
 back : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/profit.svg"
 body : "Total sales last quarter",
]

],
 [
 size : 1,
 command : "smartPage", //The SmartPage(s) to notify
 action : "updatePage", //The action to execute
 params : "2000",//The action's parameter
 newtab : false,
 type : 'red',
 front : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/risk_assesment.svg"
 body : "25",
 body_text_size : 'large', // small (90%), normal (100%), large (200%), jumbo (300%)
 title : "Incidents"
],
 back : [
 icon : "${img}anscontentsmartui/app/image/icons/windows10/white/risk_assesment.svg"
 body : "Delete",

311 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Tile: Content Script Tile Links¶

The Content Script Tile Links is a tile meant to create a customizable list of clickable links. The
data controlling the links is provided by the backing Content Script data source.

The following Content Script sample configuration produces the Links tile shown above.

 title : "More Actions"
]
],
]
]
]
]
)
}

if(params.widgetConfig){

 json(widgetConfig:[
 reloadCommands:["updateLinks"],
 html:"""

<style>
div.ans-tile-content-linkstiles{
 background: linear-gradient(180deg, #122c69 0%, #078db3 100%);
 color:#fff;
 height:100%;
}

div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(2),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(6),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(10){
 background:#00639b;
 color:#fff;
 border-radius:0px;

312 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

}
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(3),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(7),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(11){
 background:#df3324;
 color:#fff;
 border-radius:0px;
}
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(4),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(8),
div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(12){
 background:#008485;
 color:#fff;
 border-radius:0px;
}

</style>
<div style="padding:20px; background-color:white;margin-bottom:10px;color:#333" >
Click on the differnt links to see them in action.
</div>
<script>
 csui.onReady2(['csui/lib/underscore',
 'csui/lib/backbone',
 'csui/lib/jquery',
 'csui/lib/radio'],
 function(_,Backbone, jQ, Radio){
 var amChannel = Radio.channel("ampagenotify");
 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });

 });
</script>
"""
])
}else{

 retVal =
 [
 data:[
 links:[
 [
 issection:true,
 name:"First Section",
],
 [
 issection:false,
 icon:"csui-icon-home",
 name:"First Link (Navigate)",
 desc:"More information for this link",

 url:"#", //If action != null url must be set equal to #
 action:"navigate", //Will trigger a browse action of the current view
 params:"2000", //The DataID of the node you wanto to navigate to

],
 [
 issection:false,
 icon:"icon-tileExpand icon-perspective-open",
 name:"Duplicate (Action)",

 url:"#", //If action != null url must be set equal to #
 action:"notify", //Will trigger the execution of the command below
 command:"updateLinks", //The action to execute
 params:"duplicate", //The action's parameter, this value will be passed to the script in a pa

],
 [
 issection:false,

313 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Tile: Content Script Tile Tree¶

The Content Script Tile Tree creates an interactive tree structure with nodes that can be
expanded and collapsed. The tree structure uses a Content Script data source for the initial
data and for subsequent ajax data load calls.

 icon:"icon-socialFavOpen",
 name:"Notify Smart Page (Page Action)",

 url:"#", //If action != null url must be set equal to #
 command:"smartPage", //The SmartPage(s) to notify
 action:"updatePage", //The action to execute
 params:"2000" //The action's parameter

],
 [
 issection:false,
 am_icon:"am_icon_link",
 am_icon_schema:"am_icon_green",
 name:"Simple link",

 url:"http://www.answermodules.com",
 newtab:true

]

]
]
]

 if(params.tile == "duplicate"){
 retVal.data.links += retVal.data.links[-5].clone()
 retVal.data.links += retVal.data.links[-5]
 retVal.data.links += retVal.data.links[-5]
 retVal.data.links += retVal.data.links[-5]

 retVal.data.links[-4].name = "Second Section"
 }else if(params.tile == "triple"){
 retVal.data.links += retVal.data.links[-5].clone()
 retVal.data.links += retVal.data.links[-5]
 retVal.data.links += retVal.data.links[-5]
 retVal.data.links += retVal.data.links[-5]

 retVal.data.links[-4].name = "Second Section"

 retVal.data.links += retVal.data.links[-4].clone()
 retVal.data.links += retVal.data.links[-4]
 retVal.data.links += retVal.data.links[-4]
 retVal.data.links += retVal.data.links[-4]

 retVal.data.links[-4].name = "Third Section"
 }

 json(
 retVal
)

}

314 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

The following sample configuration generates the tree in the image above.

if(params.widgetConfig){
 json([id : 2,
 widgetConfig : [
 tileLayoutClasses : "",
 tileContentClasses : "",
 reloadCommands : ["updateTree"],
 root : 2000,
 plugins : ["wholerow"],
 theme : ['name': 'proton',
 'responsive': true],
 html : """
<style>
div.ans-tile-tree{
 background: linear-gradient(180deg, #122c69 0%, #078db3 100%);
 color:#fff;
 height:calc(100vh - 222px);
 font-size:13px !important;
}
.binf-widgets .jstree-proton .jstree-icon.csui-icon-node-task {
 background-image:url('${img}csui/themes/carbonfiber/image/icons/mime_task.svg')
}
.binf-widgets .jstree-proton .jstree-icon.mime_pdf{
 background-image:url('${img}csui/themes/carbonfiber/image/icons/mime_pdf.svg')
}
.jstree-anchor small{
 font-size:.9em;
 font-style:italic;
}
</style>
<div class="am-form-text-input" style="margin-top: 1px;padding: 5px 0px;">
 <label class=" control-label col-form-label am-form-text-input-label am-form-label-top" style="padding: 5px;">F
 <div class="am-form-input-wrap" style="padding: 0 5px;">
 <input id="filter" type="text" placeholder="" class="form-control" style="border-radius: 0px;box-shadow: none
 </div>
</div>

<script>
 csui.onReady2(['csui/lib/underscore',

315 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 'csui/lib/backbone',
 'csui/lib/jquery',
 'csui/lib/radio'],
 function(_,Backbone, jQ, Radio){
 var amChannel = Radio.channel("ampagenotify");
 amChannel.on("printConsole", function(params){
 console.log("GOT request "+JSON.stringify(params));
 });
 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });
 jQ("#filter").on("blur", function(){
 amChannel.trigger("updateTree",{'term':jQ(this).val()})
 })

 });
</script>"""
]
])
 return
}

data =

 [
 [

 icon : "csui-icon cs_vfolder", //mime_folder, cs_folder_root, cs_vfolder, cs_folder_open...
 id : 1,
 text : "Roots",
 children : [
 [
 action : "navigate", //Trigger a Smart View navigation
 icon : "csui-icon cs_folder_root", //cs_folder_root, cs_vfolder, cs_folder_open
 id : 2000, //The node will be used as the action's parameter
 text : "Home",
 children : false
]

],
 state : [
 opened : true
]
],
 [

 action : "printConsole", //Trigger a Tile action
 params : "3", //This value will be passed to the script in a parameter named 'tile'
 icon : "csui-icon mime_folder",
 id : 3,
 text : "Folder (Lazy Loaded)",
 children : true,
 state : [
 opened : false
]
]
]

if(params.uiParentID == "3"){
 data[1].children = [
 [

 icon : "csui-icon mime_folder",
 id : 4,
 text : "Sub Folder",
 children : [
 [
 notify : "smartPage", //Triggers a Smart Page action noifying the provided page(s) (CSV)

316 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Tile: Content Script Node Table¶

The Content Script Node Table is an enhancement of the standard Node Table tile. The tile uses
a Content Script as data source, allowing to set up any custom business logic to generate the
list of nodes to be shown.

 action : "customAction", //The action to execute
 params : "2000", //The action's parameter
 icon : "csui-icon mime_pdf",
 id : 5,
 text : "Notify Smart Page",
 children : false
],
 [
 action : "printConsole",
 params : "2000",
 icon : "csui-icon mime_pdf",
 id : 6,
 text : "Execute Action",
 children : false
]

]
]

]
}
if(params.term){
 data = data.findAll{it.text.startsWith(params.term)}
}
json(data)

317 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

def targetSpaceFilter = 2000

def subtypeFilter = 144

def paging = [actual_count:0,
 limit:((params.limit?:"30") as int),
 page:((params.page?:"1") as int),
 page_total:0,
 range_max:0,
 range_min:0,
 total_count:0,
 total_row_count:0,
 total_source_count:0]

def pageSize = paging.limit
def offset = (paging.limit * (paging.page - 1))
def firstRow = offset + 1
def lastRow = firstRow + paging.limit

nodes = []

def nameFilter = null
if(params.where_name){
 nameFilter = "%${params.where_name}%"
}

def ownerFilter = null
if(params.where_owner){a
 ownerFilter = "%${params.where_owner}%"
}

def sortingOrderParam = 'desc'
def sortingColumnParam = 'name'

def sortingOrder = 'DESC'
def sortingColumn = 'DTree.Name'

if(params.sort && params.sort.contains('_')){

 def sorting = params.sort.split('_')

 sortingOrderParam = sorting[0]
 sortingColumnParam = sorting[1]

 sortingOrder = (sortingOrderParam == 'asc') ? 'ASC' : 'DESC'

 switch(sortingColumnParam?.trim()){

 case 'name' :
 sortingColumn = 'DTree.Name'
 break

 case 'owner' :
 sortingColumn = 'KUAF.ID'
 break

 default :
 sortingColumn = 'DTree.Name'
 break
 }

}

try{

318 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 def queryParams = [targetSpaceFilter as String]
 def queryIndex = 1

 def permExpr = "(exists (select DataID from DTreeACL aclT where aclT.DataID=DTree.DataID and ${users.getRightsStr

 sqlCode = """ select DTree.DataID DID,
 DTree.Name NAME,
 overall_count = COUNT(*) OVER()

 from DTree
 LEFT JOIN KUAF ON DTree.UserID = KUAF.ID

 where DTree.ParentID = %1 """

 if(subtypeFilter){
 sqlCode += " and DTree.SubType LIKE %${++queryIndex} "
 queryParams << (subtypeFilter as String)
 }

 if(nameFilter){
 sqlCode += " and DTree.Name LIKE %${++queryIndex} "
 queryParams << (nameFilter as String)
 }

 if(ownerFilter){
 sqlCode += " and (KUAF.Name LIKE %${++queryIndex} OR KUAF.LastName LIKE %${queryIndex}) "
 queryParams << (ownerFilter as String)
 }

 if(!users.current.canAdministerSystem){
 sqlCode += " and ${permExpr} "
 }

 sqlCode += """
 ORDER BY ${sortingColumn} ${sortingOrder}
 OFFSET ${offset} ROWS
 FETCH NEXT ${pageSize} ROWS ONLY

 """

 def queryResults

 if(queryParams){
 queryResults = sql.runSQL(sqlCode, true, true, 100, *queryParams).rows
 } else {
 queryResults = sql.runSQL(sqlCode, true, true, 100).rows
 }

 def totalCount = (queryResults) ? queryResults[0].overall_count : 0

 nodes = queryResults?.collect{it.DID as Long}

 paging << [
 actual_count:totalCount,
 page_total:((totalCount%paging.limit)+1),
 range_min:paging.page*paging.limit-paging.limit+1,
 range_max:(paging.limit*(paging.page+1)-totalCount)>0?(paging.limit*(paging.page+1)-totalCount
 total_count:totalCount,
 total_row_count:totalCount,
 total_source_count:totalCount]

}catch(e){
 log.error("Error loading nodes table data",e)

319 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

 printError(e)
}

def drawStatusBar = { node ->

 def statusList = ['Draft', 'Under Revision', 'Approved', 'Published']
 def numSteps = statusList.size()
 def currStep = new Random().nextInt(statusList.size())
 def currStepName = statusList[currStep]

 def stepStyle = "height:100%; width:calc(100% / ${numSteps}); float:left; background-color:#F0AD4E; box-sizing:bo

 def stepsHtml = ""

 (currStep + 1).times{
 stepsHtml += """"""
 }

 return """
 <div style="text-align:center; font-size:.75em">${currStepName}</div>
 <div style="margin:3px 0; padding:0; height:5px; background-color:#eee;">${stepsHtml}</div>"""
}

def slurper = new JsonSlurper()

def processNode = { node->

 /* Add your custom node post-processing here */

 def myNode = asCSNode(node?.data.properties.id as long)

 def owner = myNode.createdBy
 def ownerBox = "<img src='/otcs/cs.exe/pulse/photos/userphoto/${owner.ID}/2000' style='max-height: 3em; bor
 node.data.properties.owner = ownerBox

 node.data.properties.comment = myNode.comment
 node.data.properties.statusBar = drawStatusBar(myNode)

 return node
}

results = []

if(nodes.size() > 1){

 temp = slurper.parseText(docman.getNodesRestV2JSon(nodes, null, '{"properties":{"fields":["parent_id"]}}'

 nodes.each{ node ->

 def jsonNode = temp.find{ it.data.properties.id == node }
 results << processNode(jsonNode)
 }

} else if (nodes.size() == 1){

 it = slurper.parseText(docman.getNodesRestV2JSon(nodes, null, '{"properties":{"fields":["parent_id"]}}'

 processNode(it)

 results = [it]
}

320 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Embedding Beautiful WebForms views in SmartUI¶

In order to embed a Beautiful WebForms form in a SmartUI tile, it is possible to use a Content
Script Result Tile with the following minimal configuration:

def columns = [

 type: [
 key:"type",
 name:"Type",
 type:2,
 type_name:"Integer",
 sort:false
]

 ,name: [
 key:"name",
 name:"Name",
 type:-1,
 type_name:"String",
 sort:true,
 align:"left"
]

 ,owner: [
 key:"owner",
 name:"Owner",
 type:43200,
 type_name:"String",
 sort:true,
 align:"left"
]

 ,statusBar: [
 key:"statusBar",
 name:"Doc. Status",
 type:43200,
 type_name:"String",
 sort:false,
 align:"left"
]

 ,comment: [
 key:"comment",
 name:"Comment",
 type:-1,
 type_name:"String",
 sort:false,
 align:"left"
]
]

json([paging:paging,
 columnsWithSearch:["name" , "owner"],
 results:results,
 columns:columns,
 tableColumns:columns,
 widgetConfig:[
 reloadCommands:["updateData"]
]
])

321 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

For additional details, see the dedicated section in the Beautiful WebForms documentation.

Icon reference cheat sheet¶

Iconset Color codes¶

Module Suite icons are available in the following colors:

def formID = 123456 // the dataID of the form to embed
def viewID = 234567 // the dataID of the SmartUI form view, within the Form Template

form = forms.getFormInfo(formID)
view = asCSNode(viewID)

json([output : view.renderView(binding, form),
 widgetConfig :[
 reloadCommands:[], // any SmartUI commands that will trigger a reload of the form
 tileContentClasses:"am-nobckg",
 tileLayoutClasses:"am-nobckg"
]
])

Form View Template

In order for the form to load resources compatible with usage within the SmartUI, you should use the "SmartView

Embeddable" form template, available within the SmartUI extension libraries.

322 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

../bwebforms/smartui/

All icons¶

323 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

A complete list of the currently available icons is shown below:

324 Working with Smart Pages

Copyright © 2013-2020 AnswerModules Sagl

Script Console

Working with Script Console

Execution modes¶

Script Console is a runtime environment that features different execution modes (a shell, a
script interpreter and a lightweight webserver) therefore it's the perfect solution when it comes
to integrate Content Server with external systems. The simplest way to use the Script Console is
to start it as a command line shell.

Script Console can run under both a Windows system and a Unix system, being based on a
modular Java-based architecture. The main scripts for both the supported platforms are located
under the “bin” directory in the runtime installation directory.

Command Line Shell Mode¶

In order to start the Script Console as a command line shell you have to execute the following
command

Without any additional parameter. The system should respond you with the Script Console
prompt (as shown in the figure below)

The prompt indicates the current system and its connection status. In the case of the figure
above the current system has been labeled “TEST” and is currently off-line. New system can be
added using the main configuration file of the Script Console. When newly installed a “TEST”
system configuration is made available for future references.

325 Script Console

Copyright © 2013-2020 AnswerModules Sagl

An online help about the supported commands is available directly from the Script Console
shell. Here below the list of all the commands available out-of-the-box:

loadcs

usage: loadcs -i 00000

Load a Content Script from a file or from Content Server

-e,--encoding <arg> The file encoding (platform default if not

specified)

-f,--file <arg> The local file to load as a script

-h,--help This help message

-i,--id <arg> The ID of the target script on the system

memsrc

usage: memsrc -g "MyGroup"

Search members

-@,--col-email COLUMN: Mail address

-a,--all Use a long listing format for results

-c,--match-contains MATCHING: Contains

-e,--match-endswith MATCHING: Ends with

-f,--col-first-name COLUMN: First name

-g,--filter-groups FILTER: Search only groups

-h,--help This help message

-k,--match-like MATCHING: Sounds like

-l,--col-last-name COLUMN: Last name

-m,--filter-members FILTER: Search any member

326 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

-n,--col-name COLUMN: Name

-s,--match-startswith MATCHING: Starts with

-u,--filter-users FILTER: Search only users

ls

usage: ls

List the children of the current node

-h,--help This help message

-l,--long Use a long listing format

rm

usage: rm "Node to delete" "Another node to delete"

Delete one or more nodes in the working node

-h,--help This help message

-i,--id Reference nodes by ID

-p,--parent <arg> Use specified parent in place of working node

-r,--regexp <arg> Match the node names to delete against the

specified regexp

mkdir

usage: mkdir "Folder Name"

Create a new folder

-h,--help This help message

-p,--parent <arg> The parent ID of the new folder

script

327 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

usage: script

Switch to scripting mode. In script mode you can write and save your one

script one line at a time

-h,--help This help message

quit | exit

Shutdown and exit

whoami

Information about the current user

loaddocs

usage: loaddocs -d /home/user/myDocs -i -r .*.pdf

Load documents on Content Server

-d,--directory <arg> The local directory to load files from

-h,--help This help message

-i,--interactive Prompt for confirmation for each file

-n,--name Prompt for a new name for each file

-p,--parent <arg> The target directory

-s,--suffix <arg> Match the node names to delete with the

specified suffix

system

usage: system -options

List systems or switch the current system

-a,--add <arg> Add a new system

328 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

-c,--current The current system details

-h,--help This help message

-l,--list List all the available systems

-s,--system <arg> Switch to the target system

pwd

Print the current working node

mkuser

usage: mkuser bob -p passwd1 -g "MyGroup, Developers"

Create a new user

-a Public access enabled

-c Can create and update users

-g Can create and update groups

-h,--help This help message

-l Login enabled

-p,--password <arg> The initial password

-s Can administer system

-u Can administer users

interactive

Switch to interactive console mode. In interactive mode you can enter

Content Script commands and execute them directly.

sync

usage: sync

Synchronized console command scripts

329 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

-c,--commit Commit modified local scripts to Content Server

-h,--help This help message

-n,--name <arg> The single command to sync

su

usage: su bob

Impersonate a different user

-h,--help This help message

-r,--restore Restore the original logged in user

login

usage: login -options

Login to the specified system

-h,--help This help message

-i,--interactive Force credential prompt (useful id there are

saved credentials)

-k,--save Save the provided credentials (Crypted)

-p,--password <arg> The user's password

-s,--system <arg> The system to connect to

-u,--username <arg> The username

cd

usage: cd -i 2000

Change the current working node

-c,--category Switch to category WS

330 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

-e,--enterprise Switch to enterprise WS

-h,--help This help message

-i,--id <arg> The ID of the target node

-n,--nickname <arg> The nickname of the target node

-p,--personal Switch to personal WS

logout

Logout from the current system

loadConfig

usage: loadConfig -v -m Mode

Loads the current system Base Configuration in the Script Console

Configuration

-h,--help Usage Information

-m,--mode <arg> Mode: either BASE, CUSTOM, ALL

-v,--verbose Verbose

Script Interpreter Mode¶

The Script Console can also be executed as a Script interpreter (in order to execute a specific
Content Script) in this case the Console should be executed specifying both the script to be
executed and the system to log in:

Creating new command

New commands can be registered using Content Script to implement them. Script Console comes with a set of
example commands implemented through Content Scripts that a developer can use as a reference to create his
own.

331 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

Server Mode¶

A third way the Script Console can be executed is as a lightweight webserver. In this case the
Console should be executed specifying both the port on which to listen for incoming
connection and the system to log in:

Script repositories¶

The Script Console organizes the registered Content Script in isolated repositories. A Script
repository might be dedicated to a specific system (in this case the Scripts stored in this
repository will be loaded and made available only when the user decides to login to that
system), or to a specific extension.

Script Console extensions’ script are made available through all the configured systems.

Script Console features a synchronization command (synch), that can be used, both when the
Console is running as a shell as well as when the console is running as a web server, in order to
synchronize a system repository with the contents of the corresponding CSCommands Template
folder in the Content Script Volume of the current system.

Script Console Internal scheduler configuration file
¶

The Script Console features an internal scheduler configurable through an XML configuration
file (cs-console-schedulerConfiguration.xml) that is stored under the config directory.

The internal scheduler allows to plan and execute tasks to be automatically run in the Script
Console. It is based on Quartz open source library (a well-known Java Scheduler). For further

In order to be able to execute the Script Console with this Mode valid user's credentials should have been
registered using the command:

login –k –i –s SYSTEM

In order to be able to execute the Script Console with this Mode valid user's credentials should have been
registered using the command:

login –k –i –s SYSTEM

332 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

information please make reference directly to the Quartz documentation http://quartz-
scheduler.org/ (http://quartz-scheduler.org/) .

333 Working with Script Console

Copyright © 2013-2020 AnswerModules Sagl

http://quartz-scheduler.org/
http://quartz-scheduler.org/
http://quartz-scheduler.org/

Extension for DocuSign

Working with DocuSign

This guide includes the basic set of operations that can be used to setup a document signing
process using the Module Suite Extension for DocuSign.

Creating a signing Envelope¶

One of the core concepts when setting up a DocuSign signing process is the "Envelope", which
represents the overall container for a transaction.

When defining an envelope, you will be able to provide all details of the transaction. The
minimal set of information to provide includes:

the documents to sign
the recipients of the signing request
the message they will receive

See the official DocuSign REST API guide (https://developers.docusign.com/esign-rest-api/
guides/concepts/envelopes) for more details on this topic.

The docusign Content Script service includes methods to programmatically create and send
signing envelopes.

EXAMPLE: Creating a simple envelope¶

•
•
•

def contract = docman.getDocument(123456)
String contractID = contract.ID as String

definition = docusign.getNewEnvelopeDefinition()
 .setEmailSubject("XYZ contract for signature")
 .setEmailBody("Please sign the contract.")
 .addRecipient('signers', 'Homer J. Simpson', 'homer@example.com', 'Manager')
 .addSignHereTab("homer@example.com", contractID, "Sign here", 1, 89, 100)
 .addDocuments(contract)
 .notifyOnEnvelopeCompleted()
 .notifyOnEnvelopeDeclined()
 .notifyOnEnvelopeVoided()

envelope = docusign.createEnvelopeAndSend(null, definition)

docusign.registerEnvelope(envelope) // This command will register the envelope locally on Content Server, to track it

334 Extension for DocuSign

Copyright © 2013-2020 AnswerModules Sagl

https://developers.docusign.com/esign-rest-api/guides/concepts/envelopes
https://developers.docusign.com/esign-rest-api/guides/concepts/envelopes
https://developers.docusign.com/esign-rest-api/guides/concepts/envelopes
https://developers.docusign.com/esign-rest-api/guides/concepts/envelopes

EXAMPLE: Creating an envelope using a predefined template¶

When creating a new DocuSign envelope, it is possible to provide the envelope configuration in
the form of a Map object. The structure of this map is compatible with the JSON format
DocuSign uses to define Envelopes and Templates. For this reason, for complex envelope
templates, a possible approach is to define the Template within your DocuSign account (using
the visual editor to setup Recipients, Signing Tabs, etc.) and then export it and use it within your
Content Script app.

def documentToSign = docman.getDocument(123456)
def emailMessageSubject = "XYZ contract for signature"
def emailMessageBody = "Please sign the contract."
def documentsToSign = [documentToSign]

def user = users.current

def envDefinition = [

 "documents" : documentsToSign,
 "emailSubject" : emailMessageSubject,
 "emailBlurb" : emailMessageBody,
 "signingLocation" : "Online",
 "authoritativeCopy" : "false",
 "notification": [
 "reminders": [
 "reminderEnabled" : "false",
 "reminderDelay" : "0",
 "reminderFrequency" : "0"
],
 "expirations": [
 "expireEnabled" : "true",
 "expireAfter" : "120",
 "expireWarn" : "0"
]
],
 "enforceSignerVisibility" : "false",
 "enableWetSign" : "true",
 "allowMarkup" : "false",
 "allowReassign" : "false",
 "messageLock" : "false",
 "recipientsLock" : "false",
 "recipients": [
 "signers": [user],

 /* Alternatively, a map structure can be provided to define recipients (required for external users).

 "signers": [
 [
 "defaultRecipient" : "false",
 "signInEachLocation" : "false",
 "name" : "",
 "email" : "",
 "otuser":[
 "name" : user.displayName,
 "email" : user.email,
 "ID" : user.ID
],
 "accessCode" : "",
 "requireIdLookup" : "false",
 "routingOrder" : "1",
 "note" : "",
 "roleName" : "Responder",

335 Working with DocuSign

Copyright © 2013-2020 AnswerModules Sagl

Embedded recipients¶

Module Suite Extension for DocuSign supports embedded signing for authenticated OTCS users.
When using this pattern, DocuSign delegates the task of identifying the recipients of the signing
request to Content Server. Content Server is allowed to request the generation of a pre-signed
signing url, which can be used by the recipient to sign the documents without having to
authenticate with DocuSign. This approach avoids the context switching of the normal flow,
which would require to open the system-generated email notification and access the DocuSign
signing request from the provided link.

Refer to the official DocuSign REST API Guide - Embedding (https://developers.docusign.com/
esign-rest-api/guides/features/embedding) for further details on this topic.

When using the embedded signing pattern, recipients should be specified using a CSUser
object.

EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal
user¶

In order to generate a signing URL for an embedded recipient, use the
docusign.getRecipientUrl(...) API.

 "deliveryMethod" : "email",
 "templateLocked" : "false",
 "templateRequired" : "false",
 "inheritEmailNotificationConfiguration": "false",
 "tabs": [
 //"signHereTabs": []
]
]
],
 */

 "agents" : [],
 "editors" : [],
 "intermediaries" : [],
 "carbonCopies" : [],
 "certifiedDeliveries" : [],
 "inPersonSigners" : [],
 "recipientCount" : "1"
],

 "envelopeIdStamping" : "true",
 "autoNavigation" : "true"
]

def envDef = docusign.getNewEnvelopeDefinition(envDefinition)
 .notifyOnEnvelopeSent()
 .notifyOnRecipientCompleted()
 .notifyOnEnvelopeCompleted()

def env = docusign.createEnvelopeAndSend(null, envDef)

envelope = docusign.registerEnvelope(env).envelope // Register this envelope on Content Server. This is the ID of the

336 Working with DocuSign

Copyright © 2013-2020 AnswerModules Sagl

https://developers.docusign.com/esign-rest-api/guides/features/embedding
https://developers.docusign.com/esign-rest-api/guides/features/embedding
https://developers.docusign.com/esign-rest-api/guides/features/embedding
https://developers.docusign.com/esign-rest-api/guides/features/embedding

Envelope status update and signed document synch
back¶

An important action to be performed when a signing workflow is concluded is to retrieve the
signed documents and synchronize them back on your Content Server system. Module Suite
Extension for DocuSign supports automating this task in different ways:

Subscribe to DocuSign push notifications when the envelopes change state (webhook
pattern)

Poll the envelope status and update the local instance when a change is detected

The first approach (webhook) relies on the creation of an endpoint that can be invoked from
DocuSign when changes happen. This pattern can be implemented by setting up the Script
Console DocuSign Extension

The second approach (polling) can be implemented by using the getEnvelopeUpdates(...) API on
the docusign service.

EXAMPLE: Poll DocuSign for Envelope updates and synch back
documents¶

The following script can be scheduled to periodically update all active DocuSign envelopes.

String envelopeID = 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
String username = 'Admin'

def user = users.getUserByLoginName('Admin')
def env = docusign.getEnvelope(envelopeID)

String profile = null
String recipientUserName = user.name
String recipientEmail = user.email
String recipientClientUserID = user.ID as String
String recipientID = env.recipients.find{ it.clientUserID == recipientClientUserID }.recipientID

String nextUrl = "http://mycontentserver.example.com/otcs/cs.exe"

String signingUrl = docusign.getRecipientUrl(profile, envelopeID, recipientUserName, recipientEmail

redirect signingUrl

•

•

Correct API usage

DocuSign monitors that the usage of the API is compliant with certain guidelines. Specifically, certain APIs cannot be
invoked with a frequency that goes over a certain threshold. When scheduling polling scripts, make sure that the
scheduling frequency complies with the DocuSign guidelines.

NOTE: This limitation can be overcome by using the webhook pattern, as described earlier.

337 Working with DocuSign

Copyright © 2013-2020 AnswerModules Sagl

res = sql.runSQLFast("""SELECT AM_DocuSign.EnvelopeID ENVELOPEID
 from AM_DocuSign where
 AM_DocuSign.EnvelopeStatus not in ('completed', 'Completed')""", false
if(res){
 docusign.getEnvelopesUpdates(null, res).each{

 docusign.updateEnvelope(docusign.getEnvelopeDetails(null, it.envelope))

 if(it.envelopeStatus == "completed"){
 docusign.getEnvelopeDocuments(null, it.envelope).each{ doc->
 doc.each{
 if(it.key > 0){
 docman.getNodeFast(it.key).addVersion(it.value)
 }
 }
 }
 }
 }
}

338 Working with DocuSign

Copyright © 2013-2020 AnswerModules Sagl

How to

Content Script: Retrive information

Nodes¶

Getting Content Server nodes¶

All the objects stored on OpentText Content Server are referred as nodes in Content Script.

The base interface representing a node is the CSNode interface. CSNode is the base interface
for most of the Content Script API objects (/working/contentscript/scripts/#content-script-api-
objects).

Almost all the Content Script API Objects inherit from CSNodeImpl which is the base-class
implementing the CSNode interface. As said a node represents an object on Content Server.

Different Objects correspond to different implementation of the CSNode interface (e.g.
Folders(SubType=0) are implemented by CSFolderImpl, Documents(SubType=144) correspond to
CSDocumentImpl).

A CSNode (more generally speaking any Content Script API Object) features:

Properties: this is information specific to the Content Server object (e.g. name, subtype,
size, creation date) and may vary for each CSNode implementation. In order to be
recognized as properties the CSNode fields must be decoretad with the
@ContentScriptAPIField;
API Methdos: these are the APIs used to manipulate and retrieve information associated
with objects;
Features: these are additional features that are not strictly related to objects (their are
not object's properties) but depend on external factors: the way Content Server is
configured (which modules are available, how are they configuration), on object's
configuration, on the user's permissions on the objects, on the context in which the
features are accessed etc.

The Content Script API service you are going to use the most for retriving nodes is the
docman{:style="color:red"} service.

docman{:style="color:red"} features several methods that allows you to retrive a node given:

its unique numeric identifier;

•

•

•

•

339 How to

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects

its path
its name and the container in which is located;
its nickname;
etc..

The Base API (/working/contentscript/scripts/#api-services) also features a
asCSNode{:style="color:#e7853c;font-size:bold;"} method that serves as a shortcut for the above
mentioned use cases.

Getting a node given its ID¶

•
•
•
•

Performances-tip: Lazy loading

In order to optimize performances, Content Scripts lazy-loads information from OTCS 'database, which means that
such information is not available until firstly accessed. docman{:style="color:red"} APIs allow you to specify which
information you want to load beforehand. Retriving the minimum amount of information necessary is tipically done
using the APIs ending with the Fast suffix and is to be consider a best practice and might have a significant impact

over your's application performances.

Do

Don't

1

2

3

4

5

def node = docman.getNode(123456)

if((node.Invoice.Status as String) == "Paid"){ // The node is loaded with regular method at line (1) since we
 ...
}

1

2

3

4

node = docman.getNode(123545)
if(node.parentID == -1){ //ParentID is a base property for CSNode and since we are only accessing it we shoul
 ...
}

def node = docman.getNode(2000, //NodeID (on most of the environments 2000 identifies the Enterprise Workspace)
 true, //'true' if Reference information shall be loaded
 true, //'true' if Reservation information shall be loaeded
 true, //'true' if Versions information shall be loaeded
 true, //-true- if Current Version shall be loaeded
 true, //'true' if Node's features shall be loaeded
 true, //'true' if Metadata shall be loaeded
 true, //'true' if Permissions information shall be loaeded
)

node = docman.getNode(2000) //this is a shortcut for docman.getNode(2000, true, true, false, false, true, true, true)

node = docman.getNodeFast(2000) //this is a shortcut for docman.getNode(2000, false, false, false, false, false, fals

node = asCSNode(id:2000) //this is a shortcut for docman.getNode(2000)

node = asCSNode(2000)//this is a shortcut for asCSNode(id:2000)

340 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/scripts/#api-services
/working/contentscript/scripts/#api-services

Get a list of nodes given their IDs¶

Get Volumes¶

The most common volumes can be easily accessed using a dedicated API featured by the
docman service. If an API is not available a volume can be retrieved using a simple SQL query
based on its subtype. Volumes come in handy when you want to retrieve a node by its path.

Get Nodes By Path¶

docman.getNodesFastWith(
 [2000L, 2006L], // List of nodes IDs
 ["GIF", "promotedCmds", "defaultLink", "size", "tableName"], // List of additional features t
 params, //Current request parameters
 true, //'true' if Versions information shall be loaeded
 true, //'true' if Node's features shall be loaeded
 true //'true' if Permissions information shall be loaeded
)

docman.getNodesFast(2000L, 2006L) //this is a shortcut for docman.getNodesFastWith([2000L,2006L], [], [:], false, fal

docman.getNodes(2000L, 2006L) //this is a shortcut for docman.getNodesFastWith([2000L, 2006L], [], [:], true, true, t

docman.getEnterpriseWS() //Enterprise Workspace

docman.getPersonalWS() //Personal Workspace

docman.getCategoryWS() //Category Workspace

docman.getContentScriptVolume() //Content Script Volume

/*
 161 -- Workflow Volume
 198 -- Classification Volume
 211 -- Reports Volume
 233 -- Database Lookups
 236 -- Database Connections
 274 -- Best Bets
 405 -- Recycle Bin
 541 -- Content Server Templates
 862 -- Connected Workspaces
 863 -- Workspace Types
*/

def node = docman.getNodeFast(sql.runSQLFast("""Select "DataID"
 FROM DTree
 Where SubType = 161""", false, false, 0
).rows[0].DataID)

def ews = docman.getEnterpriseWS()

node = docman.getNodeByPath(ews, "Training:Folder")

node = docman.getNodeByPath("Training:Folder") //this is a shortcut for docman.getNodeByPath(docman.getEnterpriseWS(

node = asCSNode(path:"Training:Folder")//this is a shortcut for docman.getNodeByPath("Training:Folder")

341 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Users and Groups¶

Getting Content Server Users and Groups¶

Content Server Users and Groups are managed by the users service in the Content Script. users
service operates with CSMember, CSUser and CSGroup classes. CSUser and CSGroup are the
classes that are providing API to work with the Content Server Users and Groups
correspondingly. CSMember is an abstract class for for CSUser and CSGroup objects. It is used in
the API where both Users and Groups classes can be passed as a parameter or return as a
method return value. users service provides set of methods to retrieve User or a Group:

get current user (user who is actually executing Content Script)
get user/group by id
get group by name
get user by login name
list group members
etc..

Get current User¶

Get by member ID¶

Performances-tip: Use the variable to avoid reloading the same information

In order to optimize performances, you should always assign information you know is not going to change (during
your script execution) to Content Script variables so to avoid to reload them everytime they are accessed.

Do

Don't

def ews = docman.getEnterpriseWS()

node = docman.getNodeByPath(ews, "Training:Folder")

node = docman.getNodeByPath(ews, "An:Other:Path")

node = docman.getNodeByPath(docman.getEnterpriseWS(), "Training:Folder")

node = docman.getNodeByPath(docman.getEnterpriseWS(), "An:Other:Path")

•
•
•
•
•
•

def user = users.current // Will return CSUser object of the user that is executing the script

CSMember member

342 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Get member by the name¶

Get members by ID¶

Permissions¶

Getting Content Server Node Permissions¶

Content Script docman service allows script developers to perform operations with the Content
Server permissions model. To get get node permissions:

// Pass User or Group by ID. Method will return CSUser or CSGroup class objects

//Pass ID of the Content Server User
member = users.getMemberById(1000)
out << member instanceof CSUserImpl // will display true

//Pass ID of the Content Server User
member = users.getMemberById(1001)
out << (member instanceof CSGroupImpl) // will return true

//Get User by ID
member = users.getUserById(1000) // will return CSUser class object

//Get group by ID
member = users.getGroupById(1001) // will return CSGroup class object

CSMember member

//Get Member using User Login Name
member = users.getMemberByLoginName("Admin") // Will return CSUser class object

//Get Member using Group Name
member = users.getMemberByLoginName("DefaultGroup") // Will return CSGroup class object

//Get User by UserName
member = users.getUserByLoginName("Admin")

//Get Group by Name
member = users.getGroupByName("DefaultGroup")

def members

//Get by IDs
members = users.getMembersByID(1000,1001)

//members[0] - is object of CSUser class
//members[1] - is object of CSGroup class

CSNode node = asCSNode(33561)
//Node permissions can be retrieved either
//calling CSNode getRigths() method
CSNodeRights nodeRights = node.getRights()

343 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Content Server permissions model is represented as two classes CSNodeRights and
CSNodeRight. CSNodeRights class contains all the permissions of the node. It's fields
correspond to Content Server node permission type. ownerRight - Owner Permissions
ownerGroupRight - Owner Group Permissions publicRight - Public Access Permissions
ACLRights - list of Assigned permissions Every permission is an CSNodeRight object, with
following fields: rightID - ID of the User/Group to whom this Right is assigned permissions - list
of permissions set. Following options are possible:

To get node permissions:

There are set of methods to check if current user has special permissions against the node.
Methods to check permission are implemented for CSNode and they are prefixed with "has" and
than following permissions description:

hasAddItemPermission()
hasDeletePermission()
hasDeleteVersionsPermission()
hasEditAttributesPermission()
hasEditPermissionsPermission()
hasModifyPermission()
hasReservePermission()
hasSeeContentsPermission()
hasSeePermission()

Sample validation:

//or by calling docman method and passing node as an attribute
nodeRights = docman.getRights(node)

1
[SEE, SEECONTENTS, MODIFY, EDITATTRIBUTES, RESERVE, ADDITEMS, DELETEVERSIONS, DELETE, EDITPERMISSIONS]

//To get Owner Permissions
out << nodeRights.ownerRight.permissions

//To get Assignemt Permissions Users with their permissions
def assignedAccessUsers = [:]

nodeRights.ACLRights.each{ right ->
 def currUser = users.getMemberById(right.rightID);
 assignedAccessUsers[currUser.name] = right.permissions
}

out << assignedAccessUsers

•
•
•
•
•
•
•
•
•

CSNode node = asCSNode(33561)

out << node.hasDeletePermission() //will return TRUE if current user has Delete pemissions on a node

344 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Categories¶

Getting Node Categories¶

Content Script docman service allows to performs full set of actions related to Content Server
categories. Below you will find samples how to get Category definition and get Content Server
node categories along with its attribute values.

Get value of the category attributes applied to a node:

You can always export the category as a map, and later on update it from the very same map:

Classification¶

Manipulation with a node Classifications in Content Script is performed by the classification
service. This sections describes how to get classifications applied to a node.

First of all if you need to check if node is classifiable:

def category = docman.getCategory(self.parent, "User Info") // Object of type CSCategory

def attributesMap = category.getAttributes() // Get map with Category Attributes

def firstNameAttr = category.getAttribute(attributesMap[2 as Long]) // get definition of the attribute with ID 2 CSCa

out << "Attribute ${firstNameAttr.getDisplayName()} has default value set to: ${firstNameAttr.values()}"

def node = docman.getNodeByName(self.parent, "Folder With Categoty")

//Get Attribute value
def attrValue = node."User Info"."First Name" as String
out << "The current value of First Name is now ${attrValue}
"

//get first attribute value
attrValue = node."User Info".Phone
out << "Get first Phone attribute value ${attrValue}
"

//get all attribute values
attrValue = node."User Info".Phone as List
out << "Get all Phone attribute values ${attrValue}
"

out << node."User Info" as Map

def node = docman.getNodeByName(self.parent, "Test Folder")

//Check if Classification can be applied to the node
out << "Classification can be applied to a node: ${classification.isClassifiable(node)}"
out << "
"

//List classifialbe subtypes

345 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

To get classifications:

Executing SQL queries¶

Content Script API allows execution of SQL statements against Content Server database, without
the need for creatomg a LiveReport object. sql service has a set of methods allowing developer
to run SQL queries.

Execute a simple SQL query¶

The above query is executed with three parameters, specified as %N in the SQL statement.

SQL execution methods are returning CSReportResult class object. To get query executing result
rows feature should be used, as in the example above.

Another option to run SQL queis utilization of the sql.runSQLFast() methods. Syntax for "Fast"
methods is the same. These methods are faster implementation of the SQL execution script, but
the compromise is that they are not ThreadSafe (i.e. not to be used in multi-threaded scripts).

out << "Classification can be applied to following node subtypes:"
out << "
"
out << classification.listClassifiebleSubTypes()

def node = docman.getNodeByName(self.parent, "Test Folder")

// get node classifications
def classifications = classification.getClassifications(node)

//Will return list of classifications applied to a node
out << classifications.collect { it.name }

Not all DBMS are equal

Please keep in mind DBMS server SQL specific syntax of the queries used. Adapt provided queries to the DBMS
server type in your environment.

out << sql.runSQL("""select * from DTree where %1 and ParentID = %2 and ModifyDate > %3""", //SQL Code to be executed
 true, // true if the query must be executed using a cursor
 true, // true if the query must be wrapped in a transaction (required administrative privilagies)
 10, // numer of records to be returned

 // Below the list of optional parameters
 "#FilterObject:0", // Parameters can be a LiveReport query template expression
 2000, // Integers
 1.year.ago).rows // Dates
 // Strings

346 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Execute a SQL query with pagination¶

In some cases it is required to implement queries that return paginated data, e.g. for browsing
pages. sql exposes a set of methods that allow developers to easily build such queries The
example below provides an overview of the usage of sql.runPaginatedSql() API:

Working with Forms¶

Content Server Forms and Form Templates objects can be manipulated with Content Script
through the forms service API.
The most important Service API Objects returned by the aformentioned service are: CSForm,
CSFormTemplate and Form

While CSForm is used to manipulate the Content Server Forms objects (e.g. changing name,
applying categories and classifications, changing permissions etc...) the Form type is used to
represent the data submitted (record) through the form.

def sqlProjections = "DataID, Name"
def fromClause = "DTree dt"
def whereClause = "SubType = 0"
def pageSize = 5
def transaction = true

def runPaginatedQuery = { firstRow ->

 def sqlResult = sql.runPaginatedSql(sqlProjections, fromClause, whereClause, firstRow, pageSize,

 out << "
"
 out << "Start row ${firstRow}"
 sqlResult.rows.each { row ->
 out << "
"
 out << "Folder Name: ${row.name}. Name: ${row.dataid}"
 }
}

runPaginatedQuery(1)
runPaginatedQuery(6)

Objects used in this paragraph's examples

The examples presented in this paragraph are all making use of a Form Object named HowTo Form associated to a
FormTemplate object named HowTo having the following structure.



347 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

The FormTemplate object has been configured to be associated to an SQL Table named Z_HowTo.
At the time of configuration Content Server produced the following SQL DDL instructions:

Which once executed, resulted in the creation of two tables: Z_HowTo and Z_HowToSet

create table Z_HowTo
(
VolumeID bigint not null,
DataID bigint not null,
VersionNum bigint not null,
Seq bigint null,
RowSeqNum int default 1 not null,
IterationNum int default 1 not null,
Field nvarchar(255) null,
Other_Field nvarchar(255) null
)
/

create index Z_HowTo_Index1
on Z_HowTo (VolumeID, DataID, VersionNum, Seq)
/

create table Z_HowToSet
(
VolumeID bigint not null,
DataID bigint not null,
VersionNum bigint not null,
Seq bigint null,
SubSeq int null,
RowSeqNum int default 1 not null,
IterationNum int default 1 not null,
Field_In_Set nvarchar(255) null
)
/

create index Z_HowToSet_Index1
on Z_HowToSet (VolumeID, DataID, VersionNum, Seq)
/

348 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Retrive submitted data¶

To get the Content Server Form associated submitted data you can leverage the listFormData*
APIs, these APIs accept an optional filters parameter, which can be used only for Forms having
SQL Table as associated submission mechanism. Filters are Maps having as keys the names of
the tables you want to filter data from and as values a valid SQL where clause:

Script

The Form object uses, as a submission mechanism, the SQL Storage option, while no revision mechanism has been
associated to it.

349 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Output

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

def writer = new StringWriter()
def html = new MarkupBuilder(writer)
out<< template.evaluateTemplate("#csresource(['bootstrap'])")
html.table(class:"table"){
 thead{
 tr(class:"danger"){
 th("Field")
 th("Other Field")
 th("Set")
 }
 }
 tbody{
 formNode.listFormData(["Z_HowTo":" Seq in (select Seq from Z_HowToSet where Field_In_Set = 'two') "
 tr{
 td(form.field.value)
 td(form.otherField.value)
 td{
 table(class:"table table-condensed"){
 thead{
 tr(class:"danger"){
 th("Field in Set")
 }
 }
 tbody{
 form.set.each{ row->
 tr{
 td(row.fieldInSet.value)
 }
 }
 }
 }
 }
 }
 }
 }
}
out << writer.toString()

def formNode = docman.getNodeByName(self.parent, "User Info Form") //returns a CSFormImpl node
def submittedData = formNode.listFormData()

350 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

In the script above formNode in CSForm object type that has API implemented to work with
Content Server Forms. submittedData is a list of Form object types that corresponds to certain
record of the submitted form data. To access fields of the form:

In the example above following form attributes are accessed:

Field Name Normalized

First Name firstName

Last Name lastName

Age age

In scripts, form field values can be accessed using the following notation
form.normalizedname.value

where normalization is performed by the Content Suite Framework.

Also it is possible to represent Form attributed values as a Map. This allows easy access to the
form data:

Reverse logic is kept as well, meaning Form data cat be set from a Map utilizing
forms.MapToForm(Map map, Form form)

 //List sumbitted data
 //Access Form fields
 submittedData.each {form ->
 out << "User ${form.firstName[0]} ${form.lastName as String}. Age ${form.age as String}"
 out << "
"
 }

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

// Initalize form field values: some examples

form.wordsWithSpaces.value = “TEST VALUE E” // Form template field name: words with spaces

form.camelcase.value = “TEST VALUE D” // Form template field name: camelCase

form.capitalized.value = “TEST VALUE C” // Form template field name: Capitalized

form.uppercase.value = “TEST VALUE B” // Form template field name: UPPERCASE

form.lowercase.value = “TEST VALUE A” // Form template field name: lowercase

 out << "List Form data as a Map
"

 //List all form Records as a Map
 submittedData.each {form ->
 out << "
"
 out << "${forms.formToMap(form)}"
 }

351 Content Script: Retrive information

Copyright © 2013-2020 AnswerModules Sagl

Content Script: Create objects

Coming soon...¶

Training Center

What is it?¶

Module Suite Training Center is a simple Module Suite application that allows you to download
and configure on your system a series of simple examples of using the Module Suite. The
examples are organized into two main categories: Content Script and Beautiful Webforms and
listed in increasing order of complexity.

Training Center setup¶

Installing the Training Center application on your system is a straightforward procedure made
of just two simple steps.

No Representations or Warranties; Limitations on Liability

The Training Center application (THE APPLICATION) has been created with the sole purpose of showcasing the
Module Suite's capabilities. As such, it should not be utilized in productive environments and AnswerModules in no
way guarantees that included examples are fully functional or free of errors. The information and materials on the
Training Center application could include technical inaccuracies or typographical errors. Changes are periodically
made to the information contained within it. AnswerModules Sagl MAKES NO REPRESENTATIONS OR WARRANTIES

WITH RESPECT TO ANY INFORMATION, MATERIALS, CODES OR GRAPHICS ON THE APPLICATION, ALL OF WHICH IS
PROVIDED ON A STRICTLY "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND AND HEREBY EXPRESSLY DISCLAIMS ALL
WARRANTIES WITH REGARD TO ANY INFORMATION, MATERIALS CODES OR GRAPHICS ON THE APPLICATION, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
UNDER NO CIRCUMSTANCES SHALL AnswerModules Sagl BE LIABLE UNDER ANY THEORY OF RECOVERY, AT LAW OR IN

EQUITY, FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, SPECIAL, DIRECT, INCIDENTAL, CONSEQUENTIAL OR
PUNITIVE DAMAGES (INCLUDING, BUT NOT LIMITED TO LOSS OF USE OR LOST PROFITS), ARISING OUT OF OR IN ANY
MANNER CONNECTED WITH THE USE OF INFORMATION OR SERVICE, OR THE FAILURE TO PROVIDE INFORMATION OR
SERVICES, FROM THE APPLICATION.

As administrator

The installation procedure must be performed using a user with administrative rights on the system (for example,
the administrator user)

352 Content Script: Create objects

Copyright © 2013-2020 AnswerModules Sagl

First you upload on your Content Server instance the TrainingCenterXML Package (you can
download it from here (/resources/trainingCenterXML.xml)) than you create a Content Script to
import it in the right location (please refer to the snippet below as a reference).

Once imported the Training Center application can be accessed from the Content Script Volume.
The application entry point is a Content Script named "Dashboard" located under: Content Script
Volume:CSTools:Training Center

Using the tool¶

 def targetSpace = docman.getNodeByPath(docman.getContentScriptVolume(), "CSTools")
 def source = docman.getNodeByName(self.parent, "trainingCenterXML.xml")
 admin.importXml(targetSpace, source.content.content)
 self.delete()
 source.delete()
 redirect "${url}/open/${targetSpace.ID}"

Internet access required

Your browser must have access to the Internet in order to properly execute the application of the Training Center.

As administrator

The examples must be imported using a user with administrative rights on the system (for example, the
administrator user). Your browser is required to have access to the internet in order to be able to properly run the
Training Center application.

353 Training Center

Copyright © 2013-2020 AnswerModules Sagl

/resources/trainingCenterXML.xml
/resources/trainingCenterXML.xml

To download and configure an example on your system just press the "download" button
associated with it. The application automatically downloads the required resources from the
developer.answermodules.com and installs / configures them on your system.

Once imported the example will be available under Enterprise:Module Suite examples.

Do not manually delete imported examples

We strongly advise you not to manually delete any imported examples with the Training Center application. If you
want to remove the example from your system, press the "clean" button associated with it (the application will

perform the necessary cleaning service on your behalf)

354 Training Center

Copyright © 2013-2020 AnswerModules Sagl

Adminisration

Admnistrative pages

Settings and administration tools specific to ModuleSuite components can be accessed from
the Content Server Administration pages.

Detailed information related to the single tools and configuration pages is provided in the
following sections.

Base Configuration¶

The Base Configuration page provides access to:

utilities to perform initial import/upgrade/backup of the Content Script Volume contents

licensing status

ModuleSuite database maintenance utilities

global configuration of the Content Script engine, and configuration of the single API
services

•

•

•

•

355 Adminisration

Copyright © 2013-2020 AnswerModules Sagl

configuration of custom Content Script extension modules

Enable / Disable Module Suite features¶

The amcs.core.debugEnabled is a "core" configuration flag you can use to customize your
Module Suite instance enabling/disabling ModuleSuite core features. Each bit in the mask
represent a different feature that can enabled (0) or disabled (1).

Here below a reference for the meaning of each bit in the mask.

Position Meaning Valid values
Decimal
value

1 RESERVED 0

•

Restart required

Every time changes are made to the Base Configuration, a Content Server restart is required.

356 Admnistrative pages

Copyright © 2013-2020 AnswerModules Sagl

Position Meaning Valid values
Decimal
value

2

Enable/Disable Module
Suite internal cache
(CSVolume, Form
Templates, SubViews,
Localization etc)

0 (default)= cache enabled, 1=cache disabled 2

3
Callback script execution
context mode

0(default)= single execution context for each
script of the chain, 1= shared execution context
(same for all the scripts in the chain)

4

4
Content Script objects
indexing

0(default)= Content Script objects are not
indexed by the search engine, 1=Content Script
objects are indexed by the search engine

8

5
Track in the audit trail
when a Content Script is
executed

0(default)= Do not track in the audit trail the
execution of Content Scripts, 1=Track in the
audit trail the execution of Content Scripts

16

6
Enable/Disable Asynch
events management

0(default)= Asynch events management is
enabled, 1=Asynch events management is
disabled

32

7

Perform the lookup to
determined if there are
script to be executed
asynchronously when the
event is raised

0(default)= Any "interesting" event for Asynch
events management is tracked in the
Distributed Agent queue and the lookup
required to determined if there are scripts to
be executed is performed later on by the same
DA worker that manages script execution, 1=The
lookup required to determined if there are
scripts to be executed asynchronously given
the registered event is executed when the
event is raised. The information is passed to
the DA queue only if the lookup finds that there
are scripts that need to be executed

64

8 Not used 128

9
Enables the Content
Script Sandbox (disabled
by default)

256

357 Admnistrative pages

Copyright © 2013-2020 AnswerModules Sagl

Position Meaning Valid values
Decimal
value

10

Enables the View
Template Cache (The
system is no longer going
to check for the version of
the Beautiful Webforms
View Templates
associated to the view
when a WebForm is
rendered)

512

Example of valid configuration values:

Enable Content Script indexing while disabling Module Suite cache: 8+2 = 2
Enable Content Script execution audit trail while disabling Asynch events management: 16
+ 32 = 48

Logging administration¶

The Content Script logging page allows administrators to configure the logging level of Content
Script services and objects, and also provides quick access to the log file. Logging level can be
changed at runtime without restarting the Content Server.

Each Content Script is identified by the two capital letters "CS" followed by the Content Script's
DataID (e.g. CS12345).

•
•

358 Admnistrative pages

Copyright © 2013-2020 AnswerModules Sagl

Manage API Services¶

The Content Script Extension Package management page allows to configure the availability of
Content Script API services during script execution.

Where is my log ?

Logging configuration is a server-instance configuration, please keep it in consideration when trying to set the

logging level of a scheduled script (in clustered environments), since it could actually be executed on any server on
which Distributed Agents are activated.

When installed, services are active by default. A Content Server restart is required whenever changes are made to
Content Script API extension package availability.

359 Admnistrative pages

Copyright © 2013-2020 AnswerModules Sagl

Scheduling¶

The Content Script Scheduling administration panel provides a quick overview of the Content
Script objects that are queued for scheduled execution, together with the next fire time, the
expression used to calculate the execution schedule, and generic information related to the
object itself. The object menu allows to easily access the node standard functions.

An unschedule utility allows to stop the scheduling of the corresponding script.

360 Admnistrative pages

Copyright © 2013-2020 AnswerModules Sagl

Manage Callbacks¶

The Callbacks management panel provides a tool to verify in every moment what Content Script
callbacks will be executed for specific objects in response to specific event types.

Details on how to configure Content Script Callbacks are provided in the following sections.

Content Script Volume

The Content Script Volume is a Content Server volume automatically created upon module
installation.

The volume is used to store objects for various purposes. Among others, in the Content Script
volume we may find:

System Objects: Objects necessary for the correct execution of different Module Suite
components. These objects should not require modification in normal cases.

Configuration Objects: Objects used to configure specific functionalities

standard UI customization

Configuration

The complete set of configuration options for Content Script scheduling (as well as impersonation settings) are
available through the Content Script editor Administration (/working/contentscript/otcsobj/#scheduling) tab

•

•

◦

361 Content Script Volume

Copyright © 2013-2020 AnswerModules Sagl

/working/contentscript/otcsobj/#scheduling
/working/contentscript/otcsobj/#scheduling

event callback configuration

custom column data sources

Template Objects: Various sorts of objects to be used as templates, such as:

Content Script code snippets

Beautiful WebForms form templates

Beautiful WebForms form components

HTML view templates

…

Service Scripts: Scripts executed as service endpoints

Content Script backing REST services

…

Whenever possible, a convention-over-configuration approach is adopted in the Content Script
Volume: simply placing a specific object in a specific position will be enough to alter in some
way the behavior of some functionalities.

For this reason, a set of predefined containers is available in the volume, each one meant for a
specific purpose. Here after is a view of the Content Server Volume.

The following sections will explain the purpose of each of the Containers.

◦

◦

•

◦

◦

◦

◦

◦

•

◦

◦

How should I organize my volume ?

Even though the Content Script Volume has a predefined container structure, it is not unusual to have custom user
data to be stored in the volume. Users are encouraged to use the volume to store custom templates and
configurations, for example.

362 Content Script Volume

Copyright © 2013-2020 AnswerModules Sagl

CSSystem¶

The CSSystem container is dedicated to Module Suite system components. The contents in this
location should not require editing except for very specific reasons.

CSFormTemplates¶

This container is dedicated to HTML templates associated to Beautiful WebForms Views.

It will be covered in detail in the sections dedicated to Beautiful WebForms (/working/
bwebforms/sdk/#csformtemplates).

CSHTMLTemplates¶

The CSHTMLTemplates is a container dedicated to general-purpose HTML templates that could
be necessary throughout Content Script applications.

As previously seen, Content Script can be used to create various types of output, including web
pages and document. Additionally, a few services (such as the mail service) can use templates
to perform their job.

363 Content Script Volume

Copyright © 2013-2020 AnswerModules Sagl

/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates

It is usually discouraged to place HTML templating code directly within Scripts: the suggested
approach is to separate the presentation templates from the underlying business logic, and to
store it somewhere else on Content Server, where it can be reused across applications.

The CSHTMLTemplates container is available for developers as a common storage for templates
necessary in their applications.

CSFormSnippets¶

The CSFormSnippets container is dedicated to the libraries of components that are available to
build Beautiful WebForms views.

It will be covered in detail in the sections dedicated to Beautiful WebForms.

CSScriptSnippets¶

The CSScriptSnippets container features a two-level structure identical to the one described for
the CSFormSnippets container, except that the objects stored here are not form components
but Code Snippets to be used to simplify the creation of new scripts in the Content Script Editor.

As for the Form Snippets, new families and components added in this container will
automatically be available in the Code Snippet library of the Content Script Editor.

Module Suite components and widgets library
¶

Module Suite's components behaviour and functionalities can be modified and extended by
manipulating the content of the Content Script Volume (a Content Server’s Volume created
when installing the Content Script module).

The purpose of most of the structure and content of the Content Script Volume can be easily
understood by simply navigating the volume thanks to the "convention over configuration"
paradigm that has been adopted. That means that most of the time, simply creating the right
Content Script, Template Folder or Template in the right place will be enough to activate a
specific feature. The default configuration (i.e. the default Content Script Volume's structure)
should be imported as part of the installation procedure of the Content Script module.

In the next sections we will refer to specific locations in the Content Script Volume content as
"Component Library" or simply "Library". This directory contains the default initial version of the
Library and will be used later on to manage Library’s backups and upgrades. The Library can
always be imported, exported or upgraded directly from the Module Suite’s administrative
pages.

364 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

Import and upgrade tool¶

The import and upgrade tool is a Content Script script, shipped with the module and available
through the Content Server administrative pages, that will allow you to manage and mantain
your Module Suite Library

To open the tool:

Login as Administrator and access the Module administration panel, then from the
Administration Home, select AnswerModules Administration > Base Configuration

At the top of the page, click the link Import - Manage import / upgrade of the current Library

The import and upgrade tool will be displayed.

365 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

Load a Library's manifest file¶

Any operation, such as the import/upgrade of a new library or of a subset of it, should be
performed using the provided import and upgrade tool, which will validate it against the
relative manifest file.

The manifest file can be generated directly from the import and upgrade tool clicking on the
Generate Manifest button.

Once generated, the manifest file shall be uploaded in a Content Server's space or folder and
loaded from there in the import and upgrade tool using the Browse Content Server button.

Analysing the incoming changes and the current Library version¶

The import and upgrade tool can perform an analysis comparing the incoming library's manifest
file with your currently installed library (if any), at the end of the analysis a detailed report will
be displayed.

In order to perform the analysis, once the manifest file has been loaded just click on the Run
Manifest Analysis button.

For each resource you can review the analysis status, and take the proper action.

Module Suite volume manifest file

The manifest file is a JSON file containing information related to the components and widgets that are contained
within the newly installed module's library files that will need to be imported or updated.

366 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

Actions can be taken either one resource at a time, using the contextual menu associated to
each one of them:

or for all the selected ones at the same time, using the multi-item buttons at the head of the
analysis result table:

367 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

A progress bar will keep you informed regarding the level of completion of the triggered action

Perform the initial library import¶

Open the Import and upgrade tool (/installation/library/#import-and-upgrade-tool) , load the
library manifest file for your ModuleSuite version

Select all the available resources and click on the Import multi-item button.

Wait until the progress bar indicator reaches the 100% of completeness

368 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

/installation/library/#import-and-upgrade-tool
/installation/library/#import-and-upgrade-tool

369 Module Suite components and widgets library¶

Copyright © 2013-2020 AnswerModules Sagl

Tags

370 Tags

Copyright © 2013-2020 AnswerModules Sagl

	Module Suite User Manual
	Module Suite User Manual
	About this guide
	Release Notes
	Module Suite 2.9.0
	Module Suite 2.8.0
	Module Suite 2.7.0
	Module Suite 2.6.0
	Module Suite 2.5.0
	Module Suite 2.4.0
	Module Suite 2.3.0
	Module Suite 2.2.0
	Module Suite 2.1.0
	Module Suite 2.0.0
	Previous releases

	Architecture
	Module Suite
	Module Suite Extensions
	Applicative Layers
	Requirements, links and dependencies
	Modules layouts

	Installation and Upgrade
	Prerequisites
	Installing the Suite
	Installing the Suite on Unix
	Installing Content Script
	Installing Beautiful WebForms
	Installing Smart Pages (f.k.a. Module Suite Extension for SmartUI)
	Installing Script Console
	Installing Extension Packages
	Installing Extension for DocuSign
	Applying HotFixes
	Upgrading Module Suite
	Uninstalling Module Suite

	Content Script
	Content Server object
	Content Script editor
	Language basics
	Writing and executing scripts
	Working with workflows
	Managing events (callbacks)
	Extending REST APIs
	Extending Content Script
	Content Script extension for SAP
	Extension: Classic UI

	Beautiful WebForms
	Content Server object
	Form builder
	Building views
	Widgets
	Extending BWF
	Embed into SmartUI
	Update view library
	Extension: Mobile WebForms
	Extension: Remote WebForms

	Smart Pages
	Working with Smart Pages

	Script Console
	Working with Script Console

	Extension for DocuSign
	Working with DocuSign

	How to
	Content Script: Retrive information
	Content Script: Create objects
	Training Center

	Adminisration
	Admnistrative pages
	Content Script Volume
	Snippets and Widgets library

	Tags

	About this guide
	Audience and objective¶
	Prerequisites¶

	Release Notes
	Version 2.9.0 (Ceresio) - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 2.9.0¶
	Content Script¶
	Extension for Core Share (NEW)¶
	Extension for OAuth Services (NEW)¶
	Extended logging functionality¶
	Other improvements¶

	Beautiful WebForms¶
	Improved SmartUI compatibility for widgets.¶

	Smart Pages¶
	"CSSmartMenu" has become "CSSmartView"¶
	Global revision of Smart Pages widgets¶
	New Smart Pages widgets¶
	Added support for flexbox on Smart Pages used as Smart View tiles.¶
	Revised Tree Widget¶

	All Enhancements in version 2.9.0¶
	Issues Resolved in version 2.9.0¶

	Version 2.8.0 - Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 2.8.0¶
	Issues Resolved in version 2.8.0¶

	Version 2.7.0 - Release notes¶
	Module Suite Compatibiliy Matrix¶
	Major Changes in version 2.7.0¶
	Extension Distributed Agent (NEW)¶
	Smart Pages¶

	All Enhancements in version 2.7.0¶
	Issues Resolved in version 2.7.0¶

	Version 2.6.0 - Release notes¶
	Module Suite Compatibiliy Matrix¶
	Major Changes in version 2.6.0¶
	Content Script¶
	Beautiful WebForms¶
	Form Builder¶
	Extension for Workflow¶
	Extension SFTP (NEW)¶

	Smart Pages (NEW)¶

	All Enhancements in version 2.6.0¶
	Issues Resolved in version 2.6.0¶

	Version 2.5.0 - Release notes¶
	Module Suite Compatibiliy Matrix¶
	Major Changes in version 2.5.0 SP1¶
	Major Changes in version 2.5.0¶
	Content Script¶
	Extension Engeenering (NEW)¶

	All Enhancements in version 2.5.0¶
	Issues Resolved in version 2.5.0¶

	Version 2.4.0 - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 2.4.0¶
	Beautiful WebForms¶
	Form Builder¶

	Content Script¶
	Extension Package for Blazon (NEW)¶
	Extension Package for the integration with S3 by AWS (NEW)¶
	Extension Package for xECM (NEW)¶
	Extension Package for Office documents¶

	All Enhancements in version 2.4.0¶
	Issues Resolved in version 2.4.0¶

	Version 2.3.0 - Release notes¶
	Major Changes in version 2.3.0¶
	Beautiful WebForms Form Builder¶
	Enhanced support for Internationalization¶
	Inline FormTemplate Manipulation¶

	Content Script¶
	Auditable and indexable¶
	Scheduling and Callbacks¶

	All Enhancements in version 2.3.0¶
	Issues Resolved in version 2.3.0¶

	Version 2.2.0 - Release notes¶
	Major Changes in version 2.2.0¶
	License¶
	Beautiful WebForms Form Builder¶
	CHEH Snippets¶
	Widget Visibility¶
	Buttons’ Icons and Colors¶
	Inline FormTemplate Manipulation¶
	New And Updated Widgets¶
	Field default value¶
	OnLoad script returns JSON Data¶

	New Content Script APIs¶
	DocBuilder¶
	Callback Scripts¶

	All Enhancements in version 2.2.0¶
	Issues Resolved in version 2.2.0¶

	Version 2.1.0 - Release notes¶
	Major Changes in version 2.1.0¶
	License¶
	Beautiful WebForms library of widgets¶
	Beautiful WebForms Studio¶
	New Content Script APIs¶
	Web-Services API extension pack¶

	All Enhancements in version 2.1.0¶
	Issues Resolved in version 2.1.0¶

	Version 2.0.0 - Release notes¶
	Major Changes in version 2.0.0¶
	Support for Content Server 16¶
	Completely renewed development environments and editors¶
	Full revamp of Beautiful WebForms widgets and templates libraries¶
	New Content Script APIs¶
	Records Management API extension pack¶
	Physical Objects API extension pack¶
	LDAP integration API extension pack¶
	SQL extension pack¶

	Content Script PDF API improvements¶
	Third party dependencies upgrade¶
	Weblingo override functionality¶
	Cross-script referencing¶
	Save views as Widgets¶
	Workflow Query builder¶

	All Enhancements in version 2.0.0¶
	Issues Resolved in version 2.0.0¶
	Important Notes when updating Module Suite to version 2.0.0¶
	Installing the new libraries¶
	Upgrade procedure for CSFormSnippets¶
	Upgrade procedure for CSFormTEMPLATEs¶
	Custom Form Templates and form widgets¶

	Previous releases - Release notes¶
	Architecture
	Module Suite
	Beautiful WebForms¶
	Content Script¶
	Smart Pages¶
	Script Console¶
	Module Suite default extensions¶
	Content Script Extension For Workflows¶
	Content Script Extension For WebReports¶
	Module Suite Extension For ClassicUI¶

	Module Suite Extensions
	ModuleSuite Extension For DocuSign¶
	ModuleSuite Extension For ESign¶

	Applicative Layers
	Requirements, links and dependencies
	Supported Content Server versions¶
	Dependencies¶

	Modules layouts
	Content Script¶
	amlib¶
	csscripts¶
	library¶
	override¶

	Beautiful WebForms¶
	Script console¶
	Script Console main configuration file¶

	Installation and Upgrade
	Prerequisites
	Prerequisites¶

	Installing the Suite
	Installation procedure¶

	Installing the Suite on Unix
	Installation procedure¶

	Installing Content Script
	Installation procedure (Windows)¶

	Installing Beautiful WebForms
	Installation procedure (Windows)¶

	Installing Smart Pages (f.k.a. Module Suite Extension for SmartUI)
	Prerequisites¶
	Installation procedure¶
	Installing the Module Suite extension for SmartUI¶
	Deploying Beautiful WebForms static resources¶
	Importing the SmartUI Extension library objects¶

	Installing Script Console
	Installation procedure¶
	Configure Script Console¶

	Installing Extension Packages
	Installation procedure¶
	Rendition Extension Package¶
	What is it?¶
	Install the third party rendition engine¶
	wkhtmltopdf¶
	Installation¶
	Configuration¶

	rend¶
	Installation (Windows)¶
	Installation (Unix)¶

	Configuration¶

	Content Script Extension for SAP¶
	What is it?¶
	Extension setup¶
	Installing the Content Script Extension for SAP¶
	Installation validation¶
	Configuration options¶

	Installing Extension for DocuSign
	Prerequisites¶
	Installation procedure¶
	Installing the Content Script Extension for DocuSign¶
	Installing the Script Console Extension for DocuSign (OPTIONAL)¶
	Configuration¶

	Admin dashboard¶

	Applying HotFixes
	Hotfixes deployment¶

	Upgrading Module Suite
	Upgrading from a previous version¶
	Upgrading the primary node¶
	How the library upgrade works¶

	Upgrading a secondary node¶

	Uninstalling Module Suite
	Uninstallation procedure¶

	Content Script
	Content Server object
	Creating a Content Script¶
	Object's properties¶
	Static variables¶
	Scheduling¶
	Impersonate¶
	Icon Selection¶

	Content Script editor
	Shortcuts¶
	Top Bar controls (DEVELOPER)¶
	Top Bar controls (ADMINISTRATOR)¶
	Auto-completion¶

	Language basics
	Statements¶
	Basic Control Structures¶
	Flow control: if – else¶
	Flow control: if - else if - else¶
	Flow control: inline if - else¶
	Flow control: switch¶
	Looping: while¶
	Looping: for¶

	Operators¶
	Methods and Service Parameters¶
	Properties and Fields¶
	Comments¶
	Closures¶
	Content Script programming valuable resources¶

	Writing and executing scripts
	API Services¶
	Content Script API Service¶
	Content Script API Objects¶

	Execution context¶
	Request variables¶
	Support variables¶
	Support objects¶

	Base API¶
	Script's execution¶
	Script's output¶
	HTML (default)¶
	JSON¶
	XML¶
	Files¶
	Managed resources¶

	Redirection¶
	HTTP Code¶

	Advanced programming¶
	Templating¶
	Content Script velocity macros¶

	OScript serialized data structures¶
	Optimizing your scripts¶
	Behaviors¶
	BehaviorHelper¶
	Default Behaviours¶

	Working with workflows
	Content Script Workflow Steps¶
	Content Script Package¶
	Content Script Workflow Step¶
	Workflow routing¶

	Managing events (callbacks)
	Synchronous and Asynchronous callbacks¶
	InterruptCallbackException - transaction roll-backed¶

	Extending REST APIs
	Extending REST APIs:CSServices¶
	Basic REST service¶
	Behaviour based REST services¶
	Service example¶

	Extending Content Script
	Create a Custom Service¶
	Content Script SDK setup¶
	content-script-services.xml – Service description file¶

	Content Script Extension for SAP¶
	Using the extension¶
	Function execution results¶

	SAP service APIs¶
	API Objects¶
	SapField¶

	Extension: Classic UI
	Customize an object's functions menu: CSMenu¶
	Customize a space's add-items menu: CSAddItems¶
	Customize a space's buttons bar: CSMultiButtons¶
	Customize a space's displayed columns: CSBrowseViewColumns¶
	Default Columns¶

	Customize a space content view: CSBrowseView¶
	Create a custom column backed by Content Script: CSDataSources¶

	Beautiful WebForms
	Content Server object
	Creating a Beautiful WebForms View¶
	Understanding the view object¶

	Form builder
	Layout¶
	Shortcuts¶
	Top Bar controls (DESIGNER)¶
	Top Bar controls (DEVELOPER)¶

	Building views
	Understanding the grid system¶
	Understanding the Beautiful WebForms request life-cycle¶
	How incoming requests are processed¶
	Lifecycle schema¶
	Custom Logic Execution Hooks (CLEH)¶
	Managing form fields values¶
	Adding and removing values from multivalue fields¶
	Form actions¶
	Standard form actions¶

	Custom form actions¶

	Attaching Custom information and data to a Beautiful WebForms view¶
	ViewParams¶
	ViewParams variables¶
	Form Components that make use of 'viewParams' values.¶

	The widgets library¶
	The widget configuration panel¶

	Beautiful WebForms View Templates¶
	Customize the way validation error messages are rendered¶
	Display errors in Smart View¶

	Widgets
	Beautiful WebForms Widgets¶
	Model and Template¶
	Static Resources Management¶
	Widgets libraries¶
	Widget Library V1¶
	Widget Library V2¶
	Widget Library V3¶
	Widget Library V4¶

	Extending BWF
	Content Script Volume¶
	CSServices¶
	CSFormTemplates¶
	CSFormSnippets¶

	Embed into Smart View¶
	Why?¶
	Create an embeddable WebForms¶
	How to publish a Webform into a Smart View perspective¶
	ModuleSuite Smart Pages is installed¶
	ModuleSuite Smart Pages is not installed¶

	Beautiful Webforms views updater¶
	What is it?¶
	Tool setup¶
	Tool usage¶

	Extension: Mobile WebForms
	What is it?¶
	AppWorks Mobile Application¶
	Module Suite based extension for REST APIs¶
	Mobile WebForms Application Builder¶

	Mobile WebForms setup¶
	Using the tool¶
	Creating the form¶
	Implementing the Content Script end-point¶
	Building the OpenText AppWorks Gateway Application¶

	Extension: Remote WebForms
	What is it?¶
	Extension setup¶
	Create remote package¶
	Using forms.createExPackage API¶
	Using Beautiful Webforms Studio¶

	How to deploy a Beautiful WebForms remote form package¶
	Synchronize form data back to Content Server¶
	Remote data pack files are produced on Script Console and sent over to Content Server¶
	Form data are submitted directly from Script Console¶

	Smart Pages
	Working with Smart Pages
	Basic concepts¶
	Module Suite Tiles in the Widget Library¶
	Tile Configuration¶
	Tile: Content Script Result¶
	Tile: Content Script Tile Chart¶
	Tile: Content Script Tile Tiles¶
	Tile: Content Script Tile Links¶
	Tile: Content Script Tile Tree¶
	Tile: Content Script Node Table¶

	Embedding Beautiful WebForms views in SmartUI¶
	Icon reference cheat sheet¶
	Iconset Color codes¶
	All icons¶

	Script Console
	Working with Script Console
	Execution modes¶
	Command Line Shell Mode¶
	Script Interpreter Mode¶
	Server Mode¶

	Script repositories¶
	Script Console Internal scheduler configuration file¶

	Extension for DocuSign
	Working with DocuSign
	Creating a signing Envelope¶
	EXAMPLE: Creating a simple envelope¶
	EXAMPLE: Creating an envelope using a predefined template¶

	Embedded recipients¶
	EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal user¶

	Envelope status update and signed document synch back¶
	EXAMPLE: Poll DocuSign for Envelope updates and synch back documents¶

	How to
	Content Script: Retrive information
	Nodes¶
	Getting Content Server nodes¶
	Getting a node given its ID¶
	Get a list of nodes given their IDs¶
	Get Volumes¶
	Get Nodes By Path¶

	Users and Groups¶
	Getting Content Server Users and Groups¶
	Get current User¶
	Get by member ID¶
	Get member by the name¶
	Get members by ID¶

	Permissions¶
	Getting Content Server Node Permissions¶

	Categories¶
	Getting Node Categories¶

	Classification¶
	Executing SQL queries¶
	Execute a simple SQL query¶
	Execute a SQL query with pagination¶

	Working with Forms¶
	Retrive submitted data¶

	Content Script: Create objects
	Coming soon...¶

	Training Center
	What is it?¶
	Training Center setup¶
	Using the tool¶

	Adminisration
	Admnistrative pages
	Base Configuration¶
	Enable / Disable Module Suite features¶
	Logging administration¶
	Manage API Services¶
	Scheduling¶
	Manage Callbacks¶

	Content Script Volume
	CSSystem¶
	CSFormTemplates¶
	CSHTMLTemplates¶
	CSFormSnippets¶
	CSScriptSnippets¶

	Module Suite components and widgets library¶
	Import and upgrade tool¶
	Load a Library's manifest file¶
	Analysing the incoming changes and the current Library version¶

	Perform the initial library import¶

	Tags

